forked from h2oai/h2ogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_prompter.py
672 lines (547 loc) · 34.5 KB
/
test_prompter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import os
import time
import pytest
from tests.utils import wrap_test_forked
from src.image_utils import get_image_file
from src.enums import source_prefix, source_postfix
from src.prompter import generate_prompt, convert_messages_and_extract_images, get_llm_history
example_data_point0 = dict(instruction="Summarize",
input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
output="Ducks eat and swim at the lake.")
example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_points = [example_data_point0, example_data_point1, example_data_point2]
@wrap_test_forked
def test_train_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
return generate_prompt(example_data_point, prompt_type, '', False, False)
@wrap_test_forked
def test_test_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
return generate_prompt(example_data_point, prompt_type, '', False, False)
@wrap_test_forked
def test_test_prompt2(prompt_type='human_bot', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
res = generate_prompt(example_data_point, prompt_type, '', False, False)
print(res, flush=True)
return res
prompt_fastchat = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""
prompt_humanbot = """<human>: Hello!\n<bot>: Hi!\n<human>: How are you?\n<bot>: I'm good\n<human>: Go to the market?\n<bot>:"""
prompt_prompt_answer = "<|prompt|>Hello!<|endoftext|><|answer|>Hi!<|endoftext|><|prompt|>How are you?<|endoftext|><|answer|>I'm good<|endoftext|><|prompt|>Go to the market?<|endoftext|><|answer|>"
prompt_prompt_answer_openllama = "<|prompt|>Hello!</s><|answer|>Hi!</s><|prompt|>How are you?</s><|answer|>I'm good</s><|prompt|>Go to the market?</s><|answer|>"
prompt_mpt_instruct = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction
Hello!
### Response
Hi!
### Instruction
How are you?
### Response
I'm good
### Instruction
Go to the market?
### Response
"""
prompt_mpt_chat = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Hello!<|im_end|><|im_start|>assistant
Hi!<|im_end|><|im_start|>user
How are you?<|im_end|><|im_start|>assistant
I'm good<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""
prompt_falcon = """User: Hello!
Assistant: Hi!
User: How are you?
Assistant: I'm good
User: Go to the market?
Assistant:"""
prompt_llama2 = """<s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
prompt_llama2_sys = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
prompt_llama2_pig = """<s>[INST] Who are you? [/INST] I am a big pig who loves to tell kid stories </s><s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space.
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py
prompt_beluga = """### User:
Hello!
### Assistant:
Hi!
### User:
How are you?
### Assistant:
I'm good
### User:
Go to the market?
### Assistant:
"""
prompt_beluga_sys = """### System:
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.
### User:
Hello!
### Assistant:
Hi!
### User:
How are you?
### Assistant:
I'm good
### User:
Go to the market?
### Assistant:
"""
prompt_falcon180 = """User: Hello!
Falcon: Hi!
User: How are you?
Falcon: I'm good
User: Go to the market?
Falcon:"""
prompt_falcon180_sys = """System: You are an intelligent and helpful assistant.
User: Hello!
Falcon: Hi!
User: How are you?
Falcon: I'm good
User: Go to the market?
Falcon:"""
# below doesn't actually work for xin, use alternative that works
# prompt_xwin = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""
prompt_xwin = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello!\nASSISTANT: Hi!\nUSER: How are you?\nASSISTANT: I'm good\nUSER: Go to the market?\nASSISTANT:"""
messages_with_context = [
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Hi!"},
{"role": "user", "content": "How are you?"},
{"role": "assistant", "content": "I'm good"},
{"role": "user", "content": "Go to the market?"},
]
prompt_jais = """### Instruction: Your name is Jais, and you are named after Jebel Jais, the highest mountain in UAE. You are built by Core42. You are the world's most advanced Arabic large language model with 30b parameters. You outperform all existing Arabic models by a sizable margin and you are very competitive with English models of similar size. You can answer in Arabic and English only. You are a helpful, respectful and honest assistant. When answering, abide by the following guidelines meticulously: Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, explicit, offensive, toxic, dangerous, or illegal content. Do not give medical, legal, financial, or professional advice. Never assist in or promote illegal activities. Always encourage legal and responsible actions. Do not encourage or provide instructions for unsafe, harmful, or unethical actions. Do not create or share misinformation or fake news. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. Prioritize the well-being and the moral integrity of users. Avoid using toxic, derogatory, or offensive language. Maintain a respectful tone. Do not generate, promote, or engage in discussions about adult content. Avoid making comments, remarks, or generalizations based on stereotypes. Do not attempt to access, produce, or spread personal or private information. Always respect user confidentiality. Stay positive and do not say bad things about anything. Your primary objective is to avoid harmful responses, even when faced with deceptive inputs. Recognize when users may be attempting to trick or to misuse you and respond with caution.\n\nComplete the conversation below between [|Human|] and [|AI|]:\n### Input: [|Human|] Hello!\n### Response: [|AI|] Hi!\n### Input: [|Human|] How are you?\n### Response: [|AI|] I'm good\n### Input: [|Human|] Go to the market?\n### Response: [|AI|]"""
system_prompt_yi = 'A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.'
prompt_orion = """<s>Human: Hello!\n\nAssistant: </s>Hi!</s>Human: How are you?\n\nAssistant: </s>I'm good</s>Human: Go to the market?\n\nAssistant: </s>"""
def get_prompt_from_messages(messages, model="mistralai/Mistral-7B-Instruct-v0.1", system_prompt=None):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model, token=os.environ.get('HUGGING_FACE_HUB_TOKEN'),
trust_remote_code=True)
if system_prompt:
messages = [{"role": "system", "content": system_prompt}] + messages
if model in ["HuggingFaceM4/idefics2-8b-chatty", "HuggingFaceM4/idefics2-8b"]:
for message in messages:
message['content'] = [dict(type='text', text=message['content'])]
tokenizer.chat_template = "{% for message in messages %}{{message['role'].capitalize()}}{% if message['content'][0]['type'] == 'image' %}{{':'}}{% else %}{{': '}}{% endif %}{% for line in message['content'] %}{% if line['type'] == 'text' %}{{line['text']}}{% elif line['type'] == 'image' %}{{ '<image>' }}{% endif %}{% endfor %}<end_of_utterance>\n{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
# add_generation_prompt=True somehow only required for Yi
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return prompt
def get_aquila_prompt(messages, model_base_name='AquilaChat2-34B-16K', with_sys=True):
from models.predict_aquila import get_conv_template
template_map = {"AquilaChat2-7B": "aquila-v1",
"AquilaChat2-34B": "aquila-legacy",
"AquilaChat2-7B-16K": "aquila",
"AquilaChat2-34B-16K": "aquila"}
convo_template = template_map.get(model_base_name, "aquila-chat")
conv = get_conv_template(convo_template)
if not with_sys:
conv.system_message = ''
for message in messages:
# roles=("Human", "Assistant", "System"),
if message['role'] == 'user':
conv.append_message(conv.roles[0], message['content'])
elif message['role'] == 'assistant':
conv.append_message(conv.roles[1], message['content'])
elif message['role'] == 'system':
conv.append_message(conv.roles[2], message['content'])
# assume end with asking assostiant
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
@wrap_test_forked
@pytest.mark.parametrize("prompt_type,system_prompt,chat_conversation,expected",
[
('vicuna11', 'auto', None, prompt_fastchat),
('human_bot', '', None, prompt_humanbot),
('prompt_answer', '', None, prompt_prompt_answer),
('prompt_answer_openllama', '', None, prompt_prompt_answer_openllama),
('mptinstruct', 'auto', None, prompt_mpt_instruct),
('mptchat', 'auto', None, prompt_mpt_chat),
('falcon', '', None, prompt_falcon),
('llama2', '', None, prompt_llama2),
('llama2', 'auto', None, prompt_llama2_sys),
('llama2', '', [('Who are you?', 'I am a big pig who loves to tell kid stories')],
prompt_llama2_pig),
('beluga', '', None, prompt_beluga),
('beluga', 'auto', None, prompt_beluga_sys),
('falcon_chat', '', None, prompt_falcon180),
('falcon_chat', 'auto', None, prompt_falcon180_sys),
('mistral', '', None, get_prompt_from_messages(messages_with_context)),
('zephyr', '', None, get_prompt_from_messages(messages_with_context,
model='HuggingFaceH4/zephyr-7b-beta')),
('zephyr', 'auto', None, get_prompt_from_messages(messages_with_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='You are an AI that follows instructions extremely well and as helpful as possible.')),
('zephyr', 'I am a cute pixie.', None, get_prompt_from_messages(messages_with_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='I am a cute pixie.')),
('xwin', 'auto', None, prompt_xwin),
('aquila', '', None, get_aquila_prompt(messages_with_context, with_sys=False,
model_base_name='AquilaChat2-34B-16K')),
('aquila', 'auto', None, get_aquila_prompt(messages_with_context, with_sys=True,
model_base_name='AquilaChat2-34B-16K')),
('aquila_legacy', 'auto', None, get_aquila_prompt(messages_with_context, with_sys=True,
model_base_name='AquilaChat2-34B')),
('aquila_v1', 'auto', None, get_aquila_prompt(messages_with_context, with_sys=True,
model_base_name='AquilaChat2-7B')),
('deepseek_coder', 'auto', None, get_prompt_from_messages(messages_with_context,
model='deepseek-ai/deepseek-coder-33b-instruct')),
('jais', 'auto', None, prompt_jais),
('yi', 'auto', None,
get_prompt_from_messages(messages_with_context, model='01-ai/Yi-34B-Chat',
system_prompt=system_prompt_yi)),
('orion', '', None, prompt_orion),
('gemma', '', None,
get_prompt_from_messages(messages_with_context, model='google/gemma-7b-it')),
# they baked in system prompt
('qwen', 'You are a helpful assistant.', None,
get_prompt_from_messages(messages_with_context, model='Qwen/Qwen1.5-72B-Chat')),
('idefics2',
"",
None,
get_prompt_from_messages(messages_with_context, model='HuggingFaceM4/idefics2-8b')),
]
)
def test_prompt_with_context(prompt_type, system_prompt, chat_conversation, expected):
prompt_dict = None # not used unless prompt_type='custom'
langchain_mode = 'Disabled'
add_chat_history_to_context = True
model_max_length = 2048
memory_restriction_level = 0
keep_sources_in_context = False
iinput = ''
stream_output = False
debug = False
from src.prompter import Prompter
from src.gen import history_to_context
t0 = time.time()
history = [["Hello!", "Hi!"],
["How are you?", "I'm good"],
["Go to the market?", None]
]
print("duration1: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
context, history = history_to_context(history,
langchain_mode=langchain_mode,
add_chat_history_to_context=add_chat_history_to_context,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
model_max_length=model_max_length,
memory_restriction_level=memory_restriction_level,
keep_sources_in_context=keep_sources_in_context,
system_prompt=system_prompt,
chat_conversation=chat_conversation)
print("duration2: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
instruction = history[-1][0]
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, stream_output=stream_output,
system_prompt=system_prompt)
# for instruction-tuned models, expect this:
assert prompter.PreResponse
assert prompter.PreInstruct
assert prompter.botstr
assert prompter.humanstr
print("duration3: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
print('prompt\n', prompt)
print('expected\n', expected)
print("duration4: %s %s" % (prompt_type, time.time() - t0), flush=True)
assert prompt == expected
assert prompt.find(source_prefix) == -1
prompt_fastchat1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market? ASSISTANT:"""
prompt_humanbot1 = """<human>: Go to the market?\n<bot>:"""
prompt_prompt_answer1 = "<|prompt|>Go to the market?<|endoftext|><|answer|>"
prompt_prompt_answer_openllama1 = "<|prompt|>Go to the market?</s><|answer|>"
prompt_mpt_instruct1 = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction
Go to the market?
### Response
"""
prompt_mpt_chat1 = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""
prompt_falcon1 = """User: Go to the market?
Assistant:"""
prompt_llama21 = """<s>[INST] Go to the market? [/INST]"""
prompt_llama21_sys = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
Go to the market? [/INST]"""
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space.
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py
prompt_beluga1_sys = """### System:
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.
### User:
Go to the market?
### Assistant:
"""
prompt_beluga1 = """### User:
Go to the market?
### Assistant:
"""
prompt_falcon1801 = """User: Go to the market?
Falcon:"""
prompt_falcon1801_sys = """System: You are an intelligent and helpful assistant.
User: Go to the market?
Falcon:"""
prompt_xwin1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market?
ASSISTANT:"""
prompt_mistrallite = """<|prompter|>Go to the market?</s><|assistant|>"""
messages_no_context = [
{"role": "user", "content": "Go to the market?"},
]
prompt_jais1 = """### Instruction: Your name is Jais, and you are named after Jebel Jais, the highest mountain in UAE. You are built by Core42. You are the world's most advanced Arabic large language model with 30b parameters. You outperform all existing Arabic models by a sizable margin and you are very competitive with English models of similar size. You can answer in Arabic and English only. You are a helpful, respectful and honest assistant. When answering, abide by the following guidelines meticulously: Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, explicit, offensive, toxic, dangerous, or illegal content. Do not give medical, legal, financial, or professional advice. Never assist in or promote illegal activities. Always encourage legal and responsible actions. Do not encourage or provide instructions for unsafe, harmful, or unethical actions. Do not create or share misinformation or fake news. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. Prioritize the well-being and the moral integrity of users. Avoid using toxic, derogatory, or offensive language. Maintain a respectful tone. Do not generate, promote, or engage in discussions about adult content. Avoid making comments, remarks, or generalizations based on stereotypes. Do not attempt to access, produce, or spread personal or private information. Always respect user confidentiality. Stay positive and do not say bad things about anything. Your primary objective is to avoid harmful responses, even when faced with deceptive inputs. Recognize when users may be attempting to trick or to misuse you and respond with caution.\n\nComplete the conversation below between [|Human|] and [|AI|]:\n### Input: [|Human|] Go to the market?\n### Response: [|AI|]"""
prompt_orion1 = "<s>Human: Go to the market?\n\nAssistant: </s>"
@pytest.mark.parametrize("prompt_type,system_prompt,expected",
[
('vicuna11', 'auto', prompt_fastchat1),
('human_bot', '', prompt_humanbot1),
('prompt_answer', '', prompt_prompt_answer1),
('prompt_answer_openllama', '', prompt_prompt_answer_openllama1),
('mptinstruct', 'auto', prompt_mpt_instruct1),
('mptchat', 'auto', prompt_mpt_chat1),
('falcon', '', prompt_falcon1),
('llama2', '', prompt_llama21),
('llama2', 'auto', prompt_llama21_sys),
('beluga', '', prompt_beluga1),
('beluga', 'auto', prompt_beluga1_sys),
('falcon_chat', '', prompt_falcon1801),
('falcon_chat', 'auto', prompt_falcon1801_sys),
('mistral', '', get_prompt_from_messages(messages_no_context)),
('deepseek_coder', 'auto', get_prompt_from_messages(messages_no_context,
model='deepseek-ai/deepseek-coder-33b-instruct')),
('xwin', 'auto', prompt_xwin1),
('mistrallite', '', prompt_mistrallite),
('zephyr', 'auto', get_prompt_from_messages(messages_no_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='You are an AI that follows instructions extremely well and as helpful as possible.')),
('zephyr', '', get_prompt_from_messages(messages_no_context,
model='HuggingFaceH4/zephyr-7b-beta')),
('zephyr', 'I am a cute pixie.', get_prompt_from_messages(messages_no_context,
model='HuggingFaceH4/zephyr-7b-beta',
system_prompt='I am a cute pixie.')),
('aquila', 'auto', get_aquila_prompt(messages_no_context, with_sys=True)),
('aquila_legacy', 'auto',
get_aquila_prompt(messages_no_context, with_sys=True, model_base_name='AquilaChat2-34B')),
('aquila_v1', 'auto',
get_aquila_prompt(messages_no_context, with_sys=True, model_base_name='AquilaChat2-7B')),
('jais', 'auto', prompt_jais1),
('yi', 'auto', get_prompt_from_messages(messages_no_context, model='01-ai/Yi-34B-Chat',
system_prompt=system_prompt_yi)),
('orion', '', prompt_orion1),
('gemma', '', get_prompt_from_messages(messages_no_context, model='google/gemma-7b-it')),
# then baked in system prompt
('qwen', 'You are a helpful assistant.', get_prompt_from_messages(messages_no_context, model='Qwen/Qwen1.5-72B-Chat')),
('idefics2',
"",
get_prompt_from_messages(messages_no_context, model='HuggingFaceM4/idefics2-8b')),
]
)
@wrap_test_forked
def test_prompt_with_no_context(prompt_type, system_prompt, expected):
prompt_dict = None # not used unless prompt_type='custom'
chat = True
iinput = ''
stream_output = False
debug = False
from src.prompter import Prompter
context = ''
instruction = "Go to the market?"
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, stream_output=stream_output,
system_prompt=system_prompt)
# for instruction-tuned models, expect this:
assert prompter.PreResponse
assert prompter.PreInstruct
assert prompter.botstr
assert prompter.humanstr
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
print(prompt)
assert prompt == expected
assert prompt.find(source_prefix) == -1
@wrap_test_forked
def test_source():
prompt = "Who are you?%s\nFOO\n%s" % (source_prefix, source_postfix)
assert prompt.find(source_prefix) >= 0
# https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/main/app.py
def falcon180_format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
prompt += f"""User: {message}
Falcon:"""
return prompt
@wrap_test_forked
def test_falcon180():
prompt = "Who are you?"
for system_prompt in ['', "Talk like a Pixie."]:
history = [["Who are you?", "I am Falcon, a monster AI model."],
["What can you do?", "I can do well on leaderboard but not actually 1st."]]
formatted_prompt = falcon180_format_prompt(prompt, history, system_prompt)
print(formatted_prompt)
@wrap_test_forked
def test_hf_image_chat_template():
# Example usage:
tuple_list = [
("Hello, how are you?", "I'm good, thank you!"),
(("What do you see?", "tests/jon.png"), "This is a presentation."),
("Can you help me with my project?", "Sure, what do you need help with?"),
(("And how about this image?", "tests/receipt.jpg"), "This image shows a receipt.")
]
messages, images = convert_messages_and_extract_images(tuple_list)
convert = True
str_bytes = False
image_file = images
image_control = None
document_choice = None
img_file = get_image_file(image_file, image_control, document_choice, convert=convert, str_bytes=str_bytes)
# Create inputs
from transformers import AutoProcessor
from transformers.image_utils import load_image
images = [load_image(x) for x in img_file]
# `http://` or `https://`, a valid path to an image file, or a base64 encoded string.
processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b")
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
print(prompt)
assert prompt == """User: Hello, how are you?<end_of_utterance>
Assistant: I'm good, thank you!<end_of_utterance>
User:<image>What do you see?<end_of_utterance>
Assistant: This is a presentation.<end_of_utterance>
User: Can you help me with my project?<end_of_utterance>
Assistant: Sure, what do you need help with?<end_of_utterance>
User:<image>And how about this image?<end_of_utterance>
Assistant: This image shows a receipt.<end_of_utterance>
Assistant:"""
inputs = processor(text=prompt, images=images, return_tensors="pt")
assert inputs is not None
@pytest.mark.parametrize("history, only_text, expected", [
# Test cases for empty and None history
(None, False, []),
([], False, []),
# Test cases with mixed valid and None users
([("user1", "message1"), ("user2", "message2"), (None, "error")], False, [("user1", "message1"), ("user2", "message2")]),
([("user1", "message1"), ("user2", "message2"), (None, "error")], True, [("user1", "message1"), ("user2", "message2")]),
([("user1", "message1"), ("user2", None), (None, "error")], True, [("user1", "message1")]),
([("user1", "message1"), ("user2", "message2"), ("user3", "message3"), (None, "error"), (None, "error2")], False, [("user1", "message1"), ("user2", "message2"), ("user3", "message3")]),
([("user1", "message1"), (None, "error1"), (None, "error2"), ("user2", "message2"), ("user3", "message3"), (None, "error3")], False, [("user1", "message1"), (None, "error1"), (None, "error2"), ("user2", "message2"), ("user3", "message3")]),
# Test cases for only valid users
([("user1", "message1"), ("user2", "message2")], False, [("user1", "message1"), ("user2", "message2")]),
# Test cases for only None users
([(None, "error1"), (None, "error2")], False, []),
([(None, "error1"), (None, "error2")], True, []),
# Test cases for only_text flag
([("user1", "message1"), (None, "error1"), ("user2", None), ("user3", "message3")], True, [("user1", "message1"), ("user3", "message3")]),
([("user1", "message1"), ("user2", "message2"), ("user3", "message3")], True, [("user1", "message1"), ("user2", "message2"), ("user3", "message3")])
])
def test_get_llm_history(history, only_text, expected):
assert get_llm_history(history, only_text) == expected
@pytest.mark.parametrize("history, system_prompt, model_max_length", [
# Short history, short system_prompt, short model_max_length
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"Short system prompt",
50
),
# Long history, no system_prompt, large model_max_length
(
[["Hello!" * 50, "Hi!" * 50], ["How are you?" * 50, "I'm good" * 50], ["Go to the market?" * 50, None]],
"",
2048
),
# Very long system_prompt, short history
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"System prompt " * 200,
1000
),
# Short history, large system_prompt, short model_max_length
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"System prompt " * 200,
300
),
# Very long history, large system_prompt, moderate model_max_length
(
[["Hello!" * 500, "Hi!" * 500], ["How are you?" * 500, "I'm good" * 500], ["Go to the market?" * 500, None]],
"System prompt " * 200,
1000
),
# Extremely long system_prompt, very short history
(
[["Hi", "Hello"]],
"System prompt " * 1000,
500
),
# Moderate history, moderate system_prompt, moderate model_max_length
(
[["Hello! " * 10, "Hi! " * 10], ["How are you? " * 10, "I'm good " * 10], ["Go to the market? " * 10, None]],
"Moderate system prompt",
150
),
# No system_prompt, short history, large model_max_length
(
[["Hi", "Hello"], ["What are you doing?", "Nothing much"], ["Do you like music?", "Yes"]],
"",
1000
),
# Short history, very short system_prompt, very short model_max_length
(
[["Hello!", "Hi!"], ["How are you?", "I'm good"], ["Go to the market?", None]],
"Sys",
20
),
# Long history, short system_prompt, short model_max_length
(
[["Hello!" * 20, "Hi!" * 20], ["How are you?" * 20, "I'm good" * 20], ["Go to the market?" * 20, None]],
"Short",
100
),
])
def test_history_to_context(history, system_prompt, model_max_length):
langchain_mode = 'Disabled'
add_chat_history_to_context = True
memory_restriction_level = 0
keep_sources_in_context = False
# Calculate the expected max prompt length considering the system prompt
system_prompt_length = len(system_prompt)
expected_max_prompt_length = max(0, model_max_length * 4 - system_prompt_length)
# Use the function
from src.gen import history_to_context
context, final_history = history_to_context(
history,
langchain_mode=langchain_mode,
add_chat_history_to_context=add_chat_history_to_context,
prompt_type='plain', # Using 'plain' as a default type
prompt_dict=None,
model_max_length=model_max_length,
memory_restriction_level=memory_restriction_level,
keep_sources_in_context=keep_sources_in_context,
system_prompt=system_prompt,
chat_conversation=None
)
# Verify the length of context and final history
context_length = len(context)
history_length_sum = sum(len(item[0]) + (len(item[1]) if item[1] is not None else 0) for item in final_history) // 4
fudge = 4
# Ensure the context length does not exceed the expected max prompt length
assert context_length <= expected_max_prompt_length + fudge
# Ensure the sum of history lengths does not exceed the expected max prompt length
assert history_length_sum <= expected_max_prompt_length + fudge