forked from Vahe1994/AQLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
758 lines (677 loc) · 29.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
import os
import time
from argparse import Namespace
from itertools import chain
from typing import Any, Dict, Iterable, Optional, Sequence
import torch
import torch.nn as nn
from tqdm import trange
from tqdm.auto import trange
from aq_engine import AQEngine
from src.aq import QuantizedLinear
from src.datautils import get_loaders
from src.finetune import finetune_groupwise
from src.modelutils import (
FALCON_TYPES,
find_sublayers,
get_layers,
get_lm_logits,
get_model,
get_model_head,
get_sequential_groups,
)
from src.utils import using_tf32
from transformers import PreTrainedModel
try:
import wandb
has_wandb = True
except ModuleNotFoundError:
has_wandb = False
def quantize_model(model, args):
"""main entry point to functions for model quantization"""
tick = time.time()
print("Loading data ...")
dataloader = get_loaders(
args.dataset,
nsamples=args.nsamples,
seed=args.seed,
model_path=args.model_path,
seqlen=model.seqlen,
)
results = quantize_aq(model, dataloader, args)
print(f"quantization time: {time.time() - tick:.1f}")
return results
@torch.no_grad()
def get_inps(
model: PreTrainedModel, data_iterable: Iterable, args: Namespace, nsamples: Optional[int] = None
) -> Sequence[torch.Tensor]:
"""
mocks model launch to collect inputs to the first model layer
:returns: a list of torch tensors with activations for each device in args.devices.
Each tensor has shape [nsample_per_device, seq_len, hid_size]
"""
print("catching layer inputs from data", flush=True)
layers = get_layers(model)
nsamples = nsamples or args.nsamples or len(data_iterable)
device = args.devices[0] if not args.offload_activations else torch.device("cpu")
assert nsamples is not None
if isinstance(data_iterable, torch.Tensor):
def batch_generator(testenc, seqlen, nsamples):
for i in range(nsamples):
batch = testenc[:, (i * seqlen) : ((i + 1) * seqlen)].to(device)
yield batch
data_iterable = batch_generator(data_iterable, model.seqlen, nsamples)
emb = model.get_input_embeddings()
emb_device = emb.weight.device
if emb_device.type != "cuda":
emb = emb.to(device)
# opt has other embeddings
if model.config.model_type == "opt":
model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(device)
if hasattr(model.model.decoder, "project_in") and model.model.decoder.project_in:
model.model.decoder.project_in = model.model.decoder.project_in.to(device)
device = emb.weight.device # now default device is the one where the embeddings are.
layer_device = next(layers[0].parameters()).device
layers[0] = layers[0].to(device)
dtype = next(iter(model.parameters())).dtype
nsamples_per_device = (nsamples - 1) // len(args.devices) + 1
inps = [
torch.zeros(
(min(nsamples_per_device, nsamples - i * nsamples_per_device), model.seqlen, model.config.hidden_size),
dtype=dtype,
device=args.devices[i] if not args.offload_activations else "cpu",
pin_memory=args.offload_activations,
)
for i in range(len(args.devices))
]
forward_arg_names = ["attention_mask", "position_ids"]
if model.config.model_type.lower() in FALCON_TYPES:
forward_arg_names.append("alibi")
cache = {"i": 0, "alibi": None}
class CatcherExit(Exception):
pass
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache["i"] // nsamples_per_device][cache["i"] % nsamples_per_device] = inp
cache["i"] += 1
for forward_arg_name in forward_arg_names:
cache[forward_arg_name] = kwargs.get(forward_arg_name)
raise CatcherExit()
layers[0] = Catcher(layers[0])
saved_num_threads = torch.get_num_threads()
torch.set_num_threads(min(16, saved_num_threads))
for batch_inps in data_iterable:
try:
if isinstance(batch_inps, (list, tuple)):
batch_inps, *_ = batch_inps
batch_inps = batch_inps.to(device)
# call model.forward to trigger the Catcher
model(batch_inps, attention_mask=torch.ones_like(batch_inps))
except CatcherExit:
pass # exit after catcher finished without running the rest of the model layers
torch.set_num_threads(saved_num_threads)
layers[0] = layers[0].module
layers[0] = layers[0].to(layer_device)
model.get_input_embeddings().to(emb_device)
if model.config.model_type == "opt":
model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(emb_device)
if hasattr(model.model.decoder, "project_in") and model.model.decoder.project_in:
model.model.decoder.project_in = model.model.decoder.project_in.to(emb_device)
torch.cuda.empty_cache()
forward_args = {k: cache[k] for k in forward_arg_names}
assert cache["i"] == nsamples
return inps, forward_args
@torch.no_grad()
def quantize_aq(model: PreTrainedModel, dataloader: Iterable, args: Namespace):
assert not torch.backends.cuda.matmul.allow_tf32
print("\nStarting AQ quantization ...")
inps, forward_args = get_inps(model, dataloader, args)
outs = [torch.zeros_like(inp_tensor, pin_memory=inp_tensor.is_pinned()) for inp_tensor in inps]
use_cache = model.config.use_cache
model.config.use_cache = False
quantizers = {}
overall_bits = 0
model_number_of_params = 0
layers = get_layers(model)
for layer_index in range(len(layers)):
print(f"\n---------------- Layer {layer_index} of {len(layers)} ----------------")
stats_payload = {}
start_time = time.time()
# quantized layer will return there
layer_device_original = next(layers[layer_index].parameters()).device
# backup layer dtype
layer_dtype_original = next(layers[layer_index].parameters()).dtype
print(f"{layer_device_original=}")
layer = layers[layer_index].to(args.devices[0])
for k, v in forward_args.items():
forward_args[k] = v.to(args.devices[0]) if isinstance(v, torch.Tensor) else v
if args.true_sequential:
sequential = get_sequential_groups(model)
else:
sequential = [list(find_sublayers(layer).keys())]
for names in sequential:
if len(args.devices) == 1:
assert len(inps) == len(outs) == 1 # number of per-device inputs/outputs
aq_handlers = init_aq_engines(layer, names, inps[0], outs[0], **forward_args)
else:
aq_handlers = init_aq_engines_parallel(args.devices, layer, names, inps, outs, **forward_args)
for sublayer_name in aq_handlers.keys():
print(f"Quantizing module {sublayer_name} of layer {layer_index}")
quantized_weight = aq_handlers[sublayer_name].quantize(args=args, verbose=True)
with torch.no_grad():
assert aq_handlers[sublayer_name].layer.weight in set(
layer.parameters()
) # test that this is not a replica
new_linear = QuantizedLinear(quantized_weight, aq_handlers[sublayer_name].layer.bias)
found_original = False
for submodule in layer.modules():
for child_name, child_module in submodule.named_children():
if child_module is aq_handlers[sublayer_name].layer:
setattr(submodule, child_name, new_linear)
found_original = True # note: do not break to handle tied layers
assert found_original, f"could not find {sublayer_name}"
weight_avg_bits = quantized_weight.estimate_nbits_per_parameter()
overall_bits += int(weight_avg_bits * torch.numel(aq_handlers[sublayer_name].layer.weight.data))
model_number_of_params += torch.numel(aq_handlers[sublayer_name].layer.weight.data)
print("curent_avg_bits", overall_bits / model_number_of_params)
quantizers["model.layers.%d.%s" % (layer_index, sublayer_name)] = () # to be updated
print("PREPARING TO FINETUNE")
print(layer)
layer = layer.to(dtype=torch.float32)
with using_tf32(enabled=True):
layer = finetune_groupwise(layer=layer, inps=inps, outs=outs, args=args, **forward_args)
layer = layer.to(dtype=layer_dtype_original)
print("FINISHED FINETUNING")
if args.save:
os.makedirs(args.save, exist_ok=True)
layer_save_path = os.path.join(args.save, f"{layer_index}.pth")
print(f"Saving layer {layer_index}... to {layer_save_path}")
torch.save(layer, layer_save_path)
if len(args.devices) == 1:
assert len(inps) == len(outs) == 1
out_losses = update_outs(layer, inps[0], outs[0], compute_mse=not args.skip_out_loss, **forward_args)
else:
out_losses = update_outs_parallel(
args.devices, layer, inps, outs, compute_mse=not args.skip_out_loss, **forward_args
)
layers[layer_index] = layer.to(layer_device_original)
del layer
del aq_handlers
torch.cuda.empty_cache()
inps, outs = outs, inps
# Logging
stats_payload["layer_time"] = time.time() - start_time
stats_payload["out_loss"] = torch.mean(torch.Tensor(out_losses)).item()
stats_payload["Step"] = layer_index
if args.wandb:
wandb.log({"out_loss": stats_payload["out_loss"]}, step=layer_index)
wandb.log({"layer_time": stats_payload["layer_time"]}, step=layer_index)
print(stats_payload)
print("=====================\nFinal stats:")
if args.save:
torch.save(vars(args), args.save + "/args.pt")
already_saved_weights = set()
for layer in get_layers(model):
for param in layer.parameters():
already_saved_weights.add(param)
not_quantized_weights = {
name: param for name, param in model.named_parameters() if param not in already_saved_weights
}
torch.save(not_quantized_weights, args.save + "/not_quantized_weights.pt")
if args.wandb:
wandb.log({"max_cuda_mem_quantize": round(torch.cuda.max_memory_allocated() / 1e9, 2)})
wandb.log({"Avg_bits": overall_bits / model_number_of_params})
model.config.use_cache = use_cache
print(f"quantize: {torch.cuda.max_memory_allocated()=:,}")
return quantizers
@torch.no_grad()
def perplexity_eval(model, testenc, args):
print(f"\nEvaluating perplexity for {args.dataset_name} dataset ...")
nsamples = testenc.numel() // model.seqlen
use_cache = model.config.use_cache
model.config.use_cache = False
inps, forward_args = get_inps(model, testenc, args, nsamples=nsamples)
outs = [torch.zeros_like(inp_tensor, pin_memory=inp_tensor.is_pinned()) for inp_tensor in inps]
device = args.devices[0]
for k, v in forward_args.items():
forward_args[k] = v.to(device) if isinstance(v, torch.Tensor) else v
layers = get_layers(model)
for i in trange(len(layers), desc="processing eval data by layer"):
layer = layers[i].to(device)
if len(args.devices) == 1:
assert len(inps) == len(outs) == 1
update_outs(layer, inps[0], outs[0], compute_mse=False, **forward_args)
else:
update_outs_parallel(args.devices, layer, inps, outs, compute_mse=False, **forward_args)
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
get_model_head(model).to(device)
testenc = testenc.to(device)
nsamples_per_device = len(inps[0])
assert len(set(map(len, inps[:-1]))) <= 1 and len(inps[-1]) <= len(inps[0])
nlls = []
for i in range(nsamples):
inp = inps[i // nsamples_per_device][i % nsamples_per_device].to(args.devices[0], non_blocking=True)
lm_logits = get_lm_logits(inp.to(device), model)
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = testenc[:, (i * model.seqlen) : ((i + 1) * model.seqlen)][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(f"\n{args.dataset_name} perplexity = {ppl.item():.4f}\n")
get_model_head(model).to(torch.device("cpu"))
if args.wandb:
wandb.log({args.dataset_name: ppl.item()})
model.config.use_cache = use_cache
@torch.no_grad()
def init_aq_engines(
layer: nn.Module,
names: Sequence[str],
inps_tensor: torch.Tensor,
outs_tensor: torch.Tensor,
**forward_args: Dict[str, Any],
) -> Dict[str, AQEngine]:
"""
Create a dictionary of AQUtil instances for each quantized layer;
Run forward pass on each sample in inps_tensor; write output activations to outs_tensor (in-plance)
Accumulate XTX to each one of aq_handlers
:param layer: transformer layer with one or more linear layer to be quantized
:param names: a list/tuple of string names for linear sub-layers inside :layer: that shall be quantized
:param inps_tensor: a tensor of input activations, [nsamples_per_device, seq_len, hidden_size]
:param outs_tensor: a tensor to write output activations into, [nsamples_per_device, seq_len, hidden_size]
:param forward_args: additional keyword arguments, e.g. attention mask
:returns: a dictionary where keys are full layer names and values are AQUtil instances ready to run .quantize
"""
device = torch.device(f"cuda:{torch.cuda.current_device()}" if torch.cuda.is_available() else "cpu")
all_sublayers = find_sublayers(layer)
subset = {name: all_sublayers[name] for name in names}
assert len(subset) > 0
aq_handlers = {}
for sublayer_name in subset:
aq_handlers[sublayer_name] = AQEngine(subset[sublayer_name])
# wrap all quantized sub-layers with a wrapper that accumulates inputs on forward
# note: the code below uses wrappers instead of hooks because hooks cause bugs in multi-gpu code
wrapped_layer_to_hander = {aq_handler.layer: aq_handler for aq_handler in aq_handlers.values()}
for module in list(layer.modules()):
for child_name, child in list(module.named_children()):
if child in wrapped_layer_to_hander:
setattr(module, child_name, _LayerWrapperThatAccumulatesXTX(child, wrapped_layer_to_hander[child]))
# compute output activations and accumulate XTX
for j in trange(len(inps_tensor), desc="calc outs before quantization", leave=False):
outs_tensor[j].copy_(
layer(inps_tensor[j].to(device).unsqueeze(0), **forward_args)[0].view_as(outs_tensor[j]), non_blocking=True
)
# remove wrappers
for module in list(layer.modules()):
for child_name, child in list(module.named_children()):
if isinstance(child, _LayerWrapperThatAccumulatesXTX):
setattr(module, child_name, child.wrapped_layer)
return aq_handlers
class _LayerWrapperThatAccumulatesXTX(nn.Module):
def __init__(self, layer: nn.Module, aq_handler: AQEngine):
super().__init__()
self.wrapped_layer, self.aq_handler = layer, aq_handler
def forward(self, input, *args, **kwargs):
self.aq_handler.add_batch(input)
return self.wrapped_layer(input, *args, **kwargs)
@torch.no_grad()
def init_aq_engines_parallel(
devices: Sequence[torch.device],
layer: nn.Module,
names: Sequence[str],
inps: Sequence[torch.Tensor],
outs: Sequence[torch.Tensor],
**forward_args,
):
"""Parallel version of init_aq_engines; works on lists of input/output tensors"""
layer_replicas = torch.nn.parallel.replicate(layer, devices=devices, detach=True)
layer_replicas[0] = layer # this ensures that aq_handlers returned by 0-th replica operate on the main layer
funcs_by_device = [init_aq_engines for _ in devices]
inputs_by_device = []
kwargs_by_device = []
for i in range(len(devices)):
inputs_by_device.append((layer_replicas[i], names, inps[i], outs[i]))
kwargs_by_device.append(
{
k: (v.to(devices[i], non_blocking=True) if isinstance(v, torch.Tensor) else v)
for k, v in forward_args.items()
}
)
aq_handles_by_device: Sequence[Dict[str, AQEngine]] = torch.nn.parallel.parallel_apply(
funcs_by_device, inputs_by_device, kwargs_by_device, devices=devices
)
aq_handlers = aq_handles_by_device[0]
for key, aq_handler in aq_handlers.items():
replica_handlers = [device_aq_handlers[key] for device_aq_handlers in aq_handles_by_device]
replica_nsamples = [replica_handler.nsamples for replica_handler in replica_handlers]
total_nsamples = sum(replica_nsamples)
aq_handler.XTX = sum(
(replica_handlers[i].XTX * (replica_nsamples[i] / total_nsamples)).to(devices[0], non_blocking=True)
for i in range(len(devices))
)
aq_handler.nsamples = total_nsamples
return aq_handlers
@torch.no_grad()
def update_outs(
layer: nn.Module, inps_tensor: torch.Tensor, outs_tensor: torch.Tensor, compute_mse: bool, **forward_args
) -> Sequence[float]:
"""
Update outs_tensor with new activations and optionally compute sample-wise mse loss with previous activations
:param layer: transformer layer with one or more linear layer to be quantized
:param inps_tensor: a tensor of input activations, [nsamples_per_device, seq_len, hidden_size]
:param outs_tensor: a tensor to write output activations into, [nsamples_per_device, seq_len, hidden_size]
:note: outs_tensor must contain previous activations with which to compute MSE loss
:param compute_mse: if True, return a list of sample-wise mse losses; if False, return an empty sequence
:param forward_args: additional keyword arguments, e.g. attention mask
:returns: a list of mean squared errors for each sequence
"""
device = torch.device(f"cuda:{torch.cuda.current_device()}" if torch.cuda.is_available() else "cpu")
out_losses = []
for j in trange(len(inps_tensor), desc="calc outs after quantization", leave=False):
outs_batch = layer(inps_tensor[j].to(device).unsqueeze(0), **forward_args)[0]
if compute_mse:
outs_batch_loss = (
(outs_batch - outs_tensor[j].to(device))
.float()
.square()
.view(outs_batch.shape[0], -1)
.mean(dim=1)
.sqrt()
)
outs_batch_loss /= outs_batch.view(outs_batch.shape[0], -1).float().std(dim=1)
out_losses.append(outs_batch_loss.item())
outs_tensor[j].copy_(outs_batch.reshape_as(outs_tensor[j]), non_blocking=True)
return out_losses
@torch.no_grad()
def update_outs_parallel(
devices: Sequence[torch.device],
layer: nn.Module,
inps: Sequence[torch.Tensor],
outs: Sequence[torch.Tensor],
compute_mse: bool,
**forward_args,
) -> Sequence[float]:
"""Parallel version of update_outs_and_compute_losses; works on lists of input/output tensors"""
layer_replicas = torch.nn.parallel.replicate(layer, devices=devices, detach=True)
funcs_by_device = [update_outs for _ in devices]
inputs_by_device = []
kwargs_by_device = []
for i in range(len(devices)):
inputs_by_device.append((layer_replicas[i], inps[i], outs[i], compute_mse))
kwargs_by_device.append(
{
k: (v.to(devices[i], non_blocking=True) if isinstance(v, torch.Tensor) else v)
for k, v in forward_args.items()
}
)
out_losses_by_device: Sequence[Sequence[float]] = torch.nn.parallel.parallel_apply(
funcs_by_device, inputs_by_device, kwargs_by_device, devices=devices
)
return list(chain(*out_losses_by_device))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"model_path",
type=str,
help="path to llama model to load, as in LlamaForCausalLM.from_pretrained()",
)
parser.add_argument(
"dataset",
type=str,
help="Dataset name [c4, pajama] or path to data where to extract calibration data from.",
)
parser.add_argument(
"--new_eval",
action="store_true",
help="if this is set, evaluate on new (and slightly more realistic!) val dataset versions",
)
parser.add_argument(
"--nsamples",
type=int,
default=None,
help="Number of calibration data samples.If None take all calibration data.",
)
parser.add_argument(
"--model_seqlen",
type=int,
default=4096,
help="Model seqlen and calibration data context length.",
)
parser.add_argument("--load", type=str, default=None, help="Path to load quantized statistics.")
parser.add_argument("--save", type=str, default=None, help="Path to save quantized statistics.")
parser.add_argument("--devices", metavar="N", type=str, nargs="+", default=None, help="List of devices")
parser.add_argument(
"--dtype",
type=str,
default="auto",
choices=["auto", "float16", "float32", "bfloat16"],
help="dtype to load the model in",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for calibration data and initialization. "
"Note that the main training is not strictly deterministic.",
)
parser.add_argument(
"--skip_out_loss",
action="store_true",
help="Whether to skip computation of out loss.",
)
parser.add_argument(
"--offload_activations",
action="store_true",
help="Offload activations to RAM to save GPU memory.",
)
parser.add_argument(
"--true-sequential",
action="store_true",
help="Whether to run in true sequential model.",
)
parser.add_argument(
"--num_codebooks",
type=int,
default=1,
help="#Number of codebooks per layer",
)
parser.add_argument(
"--nbits_per_codebook",
type=int,
default=16,
help="each codebook will contain 2 ** nbits_per_codebook vectors",
)
parser.add_argument(
"--out_group_size",
type=int,
default=1,
help="How many output units are quantized together",
)
parser.add_argument(
"--in_group_size",
type=int,
default=8,
help="How many input features are quantized together",
)
parser.add_argument(
"--scale_nbits",
type=int,
default=0,
help="Number of bits dedicated to the learnable group-wise scale. 0 means do not use group-wise scales "
"(still has row-wise scales), 1-15 means using per-group scales quantized to this many bits, "
"16+ means use per-group scales but do not quantize them",
)
parser.add_argument(
"--codebook_value_nbits",
type=int,
default=16,
help="If below 16, quantize the values in each codebook with the specified number of bits",
)
parser.add_argument(
"--codebook_value_num_groups",
type=int,
default=1,
help="Split codebook vectors into this many groups for quantizations. Only used when quantized codebooks.",
)
parser.add_argument(
"--init_max_iter",
type=int,
default=100,
help="Number of K-Means iterations used to initialize codebooks and codes",
)
parser.add_argument(
"--use_faiss",
action="store_true",
help="Whether to use faiss.Kmeans when initializing codebooks and codes",
)
parser.add_argument(
"--init_max_points_per_centroid",
type=int,
default=None,
help="During K-means initialzation, sample (this_many * 2 ^ nbits_per_codebook) points for training K-means",
)
parser.add_argument(
"--lr",
type=float,
default=1e-4,
help="Learning rate for Adam optimizer",
)
parser.add_argument(
"--beam_size",
type=int,
default=1,
help="Keep top-(this_many) best candidates for each codebook when finding optimal codes",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1000,
help="Maximum number of beam search rounds before the optimization is forcibly stopped.",
)
parser.add_argument(
"--relative_mse_tolerance",
type=float,
default=None,
help="Stop training when (current_epoch_mse / previous_epoch_mse) > (1 - relative_mse_tolerance)",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=100,
help="Run (this many) Adam updates before every beam search round",
)
parser.add_argument(
"--finetune_max_epochs",
type=int,
default=1000,
help="Run this many passes over training data when doing finetuning; No finetuning if set to 0.",
)
parser.add_argument(
"--finetune_lr",
type=float,
default=1e-5,
help="Finetuning learning rate",
)
parser.add_argument(
"--finetune_relative_mse_tolerance",
type=float,
default=None,
help="Stop finetuning when (current_epoch_mse / previous_epoch_mse) > (1 - relative_mse_tolerance)",
)
parser.add_argument(
"--finetune_batch_size",
type=int,
default=1,
help="(finetuning only) train on batches of this many sequences, globally across all GPUs",
)
parser.add_argument(
"--finetune_adam_beta1",
type=float,
default=0.9,
help="Finetuning adam_beta1",
)
parser.add_argument(
"--finetune_adam_beta2",
type=float,
default=0.95,
help="Finetuning adam_beta2",
)
parser.add_argument("--finetune_keep_best", action="store_true")
parser.add_argument(
"--local_batch_size",
type=int,
default=None,
help="(finetuning only) Per-device and per-forward-pass batch size used to accumulate global --batch_size",
)
parser.add_argument(
"--print_frequency",
type=int,
default=10,
help="Print Adam progress after each print_frequency updates",
)
parser.add_argument("--wandb", action="store_true", help="Whether to use wandb or store locally.")
parser.add_argument(
"--no_quant",
action="store_true",
help="Skip model quantization and immediately evaluate the loaded model",
)
torch.set_num_threads(min(16, torch.get_num_threads()))
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args = parser.parse_args()
if args.devices is None:
args.devices = [torch.device(f"cuda:{i}") for i in range(torch.cuda.device_count())]
else:
args.devices = [torch.device(device_str) for device_str in args.devices]
assert all(isinstance(device, torch.device) for device in args.devices)
if args.wandb:
assert has_wandb, "`wandb` not installed, try pip install `wandb`"
args.exp_name = (
os.environ.get("WANDB_NAME", "AQ")
+ f"_num_codebooks_{args.num_codebooks}"
+ f"_out_group_size_{args.out_group_size}"
+ f"_in_group_size_{args.in_group_size}"
+ f"_nbits_per_codebook_{args.nbits_per_codebook}"
+ f"_codebook_value_nbits_{args.codebook_value_nbits}"
+ f"_codebook_value_num_groups_{args.codebook_value_num_groups}"
+ f"_scale_nbits_{args.scale_nbits}"
+ f"_steps_per_epoch_{args.steps_per_epoch}"
+ f"_init_max_iter{args.init_max_iter}"
+ f"_{len(args.devices)}gpus"
)
args.group_size = args.in_group_size * args.out_group_size
wandb.init(
config={a: getattr(args, a) for a in dir(args) if not a.startswith("_")},
)
print("\n============ Load model... ============")
model = get_model(args.model_path, args.load, args.dtype, args.model_seqlen).train(False)
if not args.load and not args.no_quant:
print("\n============ Quantizing model... ============")
quantize_model(model, args)
print("\n============ Evaluating perplexity... ============")
torch.cuda.reset_peak_memory_stats()
datasets = ["wikitext2", "ptb", "c4"]
if args.new_eval:
datasets = ["wikitext2", "ptb-new", "c4-new"]
for dataset in datasets:
testloader = get_loaders(
dataset,
seed=args.seed,
model_path=args.model_path,
seqlen=model.seqlen,
eval_mode=True,
)
args.dataset_name = dataset
perplexity_eval(model, testloader, args)
print(f"eval: {torch.cuda.max_memory_allocated()=:,}")
if args.wandb:
wandb.log({"max_cuda_mem_eval": round(torch.cuda.max_memory_allocated() / 1e9, 2)})