The LLVM build system is designed to facilitate the building of third party
projects that use LLVM header files, libraries, and tools. In order to use
these facilities, a Makefile
from a project must do the following things:
- Set
make
variables. There are several variables that aMakefile
needs to set to use the LLVM build system:PROJECT_NAME
- The name by which your project is known.LLVM_SRC_ROOT
- The root of the LLVM source tree.LLVM_OBJ_ROOT
- The root of the LLVM object tree.PROJ_SRC_ROOT
- The root of the project's source tree.PROJ_OBJ_ROOT
- The root of the project's object tree.PROJ_INSTALL_ROOT
- The root installation directory.LEVEL
- The relative path from the current directory to the project's root($PROJ_OBJ_ROOT)
.
- Include
Makefile.config
from$(LLVM_OBJ_ROOT)
. - Include
Makefile.rules
from$(LLVM_SRC_ROOT)
.
There are two ways that you can set all of these variables:
- You can write your own
Makefiles
which hard-code these values. - You can use the pre-made LLVM sample project. This sample project includes
Makefiles
, a configure script that can be used to configure the location of LLVM, and the ability to support multiple object directories from a single source directory.
This document assumes that you will base your project on the LLVM sample project
found in llvm/projects/sample
. If you want to devise your own build system,
studying the sample project and LLVM Makefiles
will probably provide enough
information on how to write your own Makefiles
.
Follow these simple steps to start your project:
- Copy the
llvm/projects/sample
directory to any place of your choosing. You can place it anywhere you like. Rename the directory to match the name of your project. - If you downloaded LLVM using Subversion, remove all the directories named
.svn
(and all the files therein) from your project's new source tree. This will keep Subversion from thinking that your project is insidellvm/trunk/projects/sample
. - Add your source code and Makefiles to your source tree.
- If you want your project to be configured with the
configure
script then you need to editautoconf/configure.ac
as follows:- AC_INIT - Place the name of your project, its version number and a contact email address for your project as the arguments to this macro
- AC_CONFIG_AUX_DIR - If your project isn't in the
llvm/projects
directory then you might need to adjust this so that it specifies a relative path to thellvm/autoconf
directory. - LLVM_CONFIG_PROJECT - Just leave this alone.
- AC_CONFIG_SRCDIR - Specify a path to a file name that identifies your
project; or just leave it at
Makefile.common.in
. - AC_CONFIG_FILES - Do not change.
- AC_CONFIG_MAKEFILE - Use one of these macros for each Makefile that your project uses. This macro arranges for your makefiles to be copied from the source directory, unmodified, to the build directory.
- After updating
autoconf/configure.ac
, regenerate the configure script with these commands. (You must be usingAutoconf
version 2.59 or later and youraclocal
version should be 1.9 or later.)
% cd autoconf
% ./AutoRegen.sh
Run
configure
in the directory in which you want to place object code. Use the following options to tell your project where it can find LLVM:--with-llvmsrc=<directory>
Tell your project where the LLVM source tree is located.
--with-llvmobj=<directory>
Tell your project where the LLVM object tree is located.
--prefix=<directory>
Tell your project where it should get installed.
That's it! Now all you have to do is type gmake
(or make
if your on a
GNU/Linux system) in the root of your object directory, and your project should
build.
In order to use the LLVM build system, you will want to organize your source
code so that it can benefit from the build system's features. Mainly, you want
your source tree layout to look similar to the LLVM source tree layout. The
best way to do this is to just copy the project tree from
llvm/projects/sample
and modify it to meet your needs, but you can certainly
add to it if you want.
Underneath your top level directory, you should have the following directories:
lib
This subdirectory should contain all of your library source code. For each library that you build, you will have one directory in lib that will contain that library's source code.
Libraries can be object files, archives, or dynamic libraries. The lib directory is just a convenient place for libraries as it places them all in a directory from which they can be linked later.
include
This subdirectory should contain any header files that are global to your project. By global, we mean that they are used by more than one library or executable of your project.
By placing your header files in include, they will be found automatically by the LLVM build system. For example, if you have a file include/jazz/note.h, then your source files can include it simply with #include "jazz/note.h".
tools
This subdirectory should contain all of your source code for executables. For each program that you build, you will have one directory in tools that will contain that program's source code.
test
This subdirectory should contain tests that verify that your code works correctly. Automated tests are especially useful.
Currently, the LLVM build system provides basic support for tests. The LLVM system provides the following:
LLVM provides a
tcl
procedure that is used byDejagnu
to run tests. It can be found inllvm/lib/llvm-dg.exp
. This test procedure usesRUN
lines in the actual test case to determine how to run the test. See the TestingGuide for more details. You can easily write Makefile support similar to the Makefiles inllvm/test
to useDejagnu
to run your project's tests.LLVM contains an optional package called
llvm-test
, which provides benchmarks and programs that are known to compile with the Clang front end. You can use these programs to test your code, gather statistical information, and compare it to the current LLVM performance statistics.Currently, there is no way to hook your tests directly into the
llvm/test
testing harness. You will simply need to find a way to use the source provided within that directory on your own.
Typically, you will want to build your lib directory first followed by your tools directory.
The LLVM build system provides a convenient way to build libraries and executables. Most of your project Makefiles will only need to define a few variables. Below is a list of the variables one can set and what they can do:
LEVEL
This variable is the relative path from thisMakefile
to the top directory of your project's source code. For example, if your source code is in/tmp/src
, then theMakefile
in/tmp/src/jump/high
would setLEVEL
to"../.."
.
DIRS
This is a space separated list of subdirectories that should be built. They will be built, one at a time, in the order specified.
PARALLEL_DIRS
This is a list of directories that can be built in parallel. These will be built after the directories in DIRS have been built.
OPTIONAL_DIRS
This is a list of directories that can be built if they exist, but will not cause an error if they do not exist. They are built serially in the order in which they are listed.
LIBRARYNAME
This variable contains the base name of the library that will be built. For example, to build a library namedlibsample.a
,LIBRARYNAME
should be set tosample
.
BUILD_ARCHIVE
By default, a library is a.o
file that is linked directly into a program. To build an archive (also known as a static library), set theBUILD_ARCHIVE
variable.
SHARED_LIBRARY
If SHARED_LIBRARY
is defined in your Makefile, a shared (or dynamic)
library will be built.
TOOLNAME
This variable contains the name of the program that will be built. For example, to build an executable namedsample
,TOOLNAME
should be set tosample
.
USEDLIBS
This variable holds a space separated list of libraries that should be linked into the program. These libraries must be libraries that come from your lib directory. The libraries must be specified without their
lib
prefix. For example, to linklibsample.a
, you would setUSEDLIBS
tosample.a
.Note that this works only for statically linked libraries.
LLVMLIBS
This variable holds a space separated list of libraries that should be linked into the program. These libraries must be LLVM libraries. The libraries must be specified without their
lib
prefix. For example, to link with a driver that performs an IR transformation you might setLLVMLIBS
to this minimal set of librariesLLVMSupport.a LLVMCore.a LLVMBitReader.a LLVMAsmParser.a LLVMAnalysis.a LLVMTransformUtils.a LLVMScalarOpts.a LLVMTarget.a
.Note that this works only for statically linked libraries. LLVM is split into a large number of static libraries, and the list of libraries you require may be much longer than the list above. To see a full list of libraries use:
llvm-config --libs all
. UsingLINK_COMPONENTS
as described below, obviates the need to setLLVMLIBS
.
LINK_COMPONENTS
This variable holds a space separated list of components that the LLVMMakefiles
pass to thellvm-config
tool to generate a link line for the program. For example, to link with all LLVM libraries useLINK_COMPONENTS = all
.
LIBS
To link dynamic libraries, add <tt>-l<library base name></tt> to the
LIBS
variable. The LLVM build system will look in the same places for dynamic libraries as it does for static libraries.For example, to link
libsample.so
, you would have the following line in yourMakefile
:
Note that LIBS
must occur in the Makefile after the inclusion of
Makefile.common
.
CFLAGS
CPPFLAGS
This variable can be used to add options to the C and C++ compiler, respectively. It is typically used to add options that tell the compiler the location of additional directories to search for header files.
It is highly suggested that you append to
CFLAGS
andCPPFLAGS
as opposed to overwriting them. The masterMakefiles
may already have useful options in them that you may not want to overwrite.
The final location of built libraries and executables will depend upon whether
you do a Debug
, Release
, or Profile
build.
Libraries
All libraries (static and dynamic) will be stored inPROJ_OBJ_ROOT/<type>/lib
, where type isDebug
,Release
, orProfile
for a debug, optimized, or profiled build, respectively.
Executables
All executables will be stored inPROJ_OBJ_ROOT/<type>/bin
, where type isDebug
,Release
, orProfile
for a debug, optimized, or profiled build, respectively.
If you have any questions or need any help creating an LLVM project, the LLVM team would be more than happy to help. You can always post your questions to the LLVM Developers Mailing List.