forked from amazon-science/mm-cot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
383 lines (346 loc) · 14.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import numpy as np
import torch
import os
import re
import json
import argparse
import random
from transformers import T5Tokenizer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer, T5ForConditionalGeneration
from model import T5ForConditionalGeneration, T5ForMultimodalGeneration
from utils_data import img_shape, load_data_std, load_data_img, ScienceQADatasetStd, ScienceQADatasetImg
from utils_prompt import *
from utils_evaluate import get_scores
from rich.table import Column, Table
from rich import box
from rich.console import Console
console = Console(record=True)
from torch import cuda
import nltk
import evaluate
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='data')
parser.add_argument('--output_dir', type=str, default='experiments')
parser.add_argument('--model', type=str, default='allenai/unifiedqa-t5-base')
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--bs', type=int, default=16)
parser.add_argument('--input_len', type=int, default=512)
parser.add_argument('--output_len', type=int, default=64)
parser.add_argument('--eval_bs', type=int, default=16)
parser.add_argument('--eval_acc', type=int, default=None, help='evaluate accumulation step')
parser.add_argument('--train_split', type=str, default='train', choices=['train', 'trainval', 'minitrain'])
parser.add_argument('--val_split', type=str, default='val', choices=['test', 'val', 'minival'])
parser.add_argument('--test_split', type=str, default='test', choices=['test', 'minitest'])
parser.add_argument('--use_generate', action='store_true', help='only for baseline to improve inference speed')
parser.add_argument('--final_eval', action='store_true', help='only evaluate the model at the final epoch')
parser.add_argument('--user_msg', type=str, default="baseline", help='experiment type in the save_dir')
parser.add_argument('--img_type', type=str, default=None, choices=['detr', 'clip', 'resnet'], help='type of image features')
parser.add_argument('--eval_le', type=str, default=None, help='generated rationale for the dev set')
parser.add_argument('--test_le', type=str, default=None, help='generated rationale for the test set')
parser.add_argument('--evaluate_dir', type=str, default=None, help='the directory of model for evaluation')
parser.add_argument('--caption_file', type=str, default='data/captions.json')
parser.add_argument('--use_caption', action='store_true', help='use image captions or not')
parser.add_argument('--prompt_format', type=str, default='QCM-A', help='prompt format template',
choices=['QCM-A', 'QCM-LE', 'QCMG-A', 'QCM-LEA', 'QCM-ALE'])
parser.add_argument('--seed', type=int, default=42, help='random seed')
args = parser.parse_args()
return args
def T5Trainer(
dataframe, args,
):
torch.manual_seed(args.seed) # pytorch random seed
np.random.seed(args.seed) # numpy random seed
torch.backends.cudnn.deterministic = True
if args.evaluate_dir is not None:
args.model = args.evaluate_dir
tokenizer = T5Tokenizer.from_pretrained(args.model)
console.log(f"""[Model]: Loading {args.model}...\n""")
console.log(f"[Data]: Reading data...\n")
problems = dataframe['problems']
qids = dataframe['qids']
train_qids = qids['train']
test_qids = qids['test']
val_qids = qids['val']
if args.evaluate_dir is not None:
save_dir = args.evaluate_dir
else:
model_name = args.model.replace("/","-")
gpu_count = torch.cuda.device_count()
save_dir = f"{args.output_dir}/{args.user_msg}_{model_name}_{args.img_type}_{args.prompt_format}_lr{args.lr}_bs{args.bs * gpu_count}_op{args.output_len}_ep{args.epoch}"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
padding_idx = tokenizer._convert_token_to_id(tokenizer.pad_token)
if args.img_type is not None:
patch_size = img_shape[args.img_type]
model = T5ForMultimodalGeneration.from_pretrained(args.model, patch_size=patch_size, padding_idx=padding_idx, save_dir=save_dir)
name_maps = dataframe['name_maps']
image_features = dataframe['image_features']
train_set = ScienceQADatasetImg(
problems,
train_qids,
name_maps,
tokenizer,
args.input_len,
args.output_len,
args,
image_features,
)
eval_set = ScienceQADatasetImg(
problems,
val_qids,
name_maps,
tokenizer,
args.input_len,
args.output_len,
args,
image_features,
args.eval_le,
)
test_set = ScienceQADatasetImg(
problems,
test_qids,
name_maps,
tokenizer,
args.input_len,
args.output_len,
args,
image_features,
args.test_le,
)
else:
model = T5ForConditionalGeneration.from_pretrained(args.model)
train_set = ScienceQADatasetStd(
problems,
train_qids,
tokenizer,
args.input_len,
args.output_len,
args,
)
eval_set = ScienceQADatasetStd(
problems,
val_qids,
tokenizer,
args.input_len,
args.output_len,
args,
args.eval_le,
)
test_set = ScienceQADatasetStd(
problems,
test_qids,
tokenizer,
args.input_len,
args.output_len,
args,
args.test_le,
)
datacollator = DataCollatorForSeq2Seq(tokenizer)
print("model parameters: ", model.num_parameters())
def extract_ans(ans):
pattern = re.compile(r'The answer is \(([A-Z])\)')
res = pattern.findall(ans)
if len(res) == 1:
answer = res[0] # 'A', 'B', ...
else:
answer = "FAILED"
return answer
# accuracy for answer inference
def compute_metrics_acc(eval_preds):
if args.use_generate:
preds, targets = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
else:
preds = eval_preds.predictions[0]
targets = eval_preds.label_ids
preds = preds.argmax(axis=2)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
correct = 0
assert len(preds) == len(targets)
for idx, pred in enumerate(preds):
reference = targets[idx]
reference = extract_ans(reference)
extract_pred = extract_ans(pred)
best_option = extract_pred
if reference == best_option:
correct +=1
return {'accuracy': 1.0*correct/len(targets)}
# rougel for rationale generation
metric = evaluate.load("rouge")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics_rougel(eval_preds):
if args.use_generate:
preds, targets = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
else:
preds = eval_preds.predictions[0]
targets = eval_preds.label_ids
preds = preds.argmax(axis=2)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
decoded_preds, decoded_labels = postprocess_text(preds, targets)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# only use the last model for evaluation to save time
if args.final_eval:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=False,
evaluation_strategy="no",
logging_strategy="steps",
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=0.01,
num_train_epochs=args.epoch,
predict_with_generate=args.use_generate,
report_to="none",
)
# evaluate at each epoch
else:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=True,
evaluation_strategy="epoch",
logging_strategy="steps",
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=0.01,
num_train_epochs=args.epoch,
metric_for_best_model="accuracy" if args.prompt_format != "QCM-LE" else "rougeL",
predict_with_generate=args.use_generate,
load_best_model_at_end=True,
report_to="none",
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_set,
eval_dataset=eval_set,
data_collator=datacollator,
tokenizer=tokenizer,
compute_metrics = compute_metrics_acc if args.prompt_format != "QCM-LE" else compute_metrics_rougel
)
if args.evaluate_dir is None:
trainer.train()
trainer.save_model(save_dir)
metrics = trainer.evaluate(eval_dataset = test_set)
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
predict_results = trainer.predict(test_dataset=test_set, max_length=args.output_len)
if trainer.is_world_process_zero():
if args.use_generate:
preds, targets = predict_results.predictions, predict_results.label_ids
else:
preds = predict_results.predictions[0]
targets = predict_results.label_ids
preds = preds.argmax(axis=2)
preds = tokenizer.batch_decode(
preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
targets = tokenizer.batch_decode(
targets, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
results_ans = {}
results_rationale = {}
results_reference = {}
num_fail = 0
for idx, qid in enumerate(test_qids):
pred = preds[int(idx)]
ref = targets[int(idx)]
extract_pred = extract_ans(pred)
if extract_pred != "FAILED":
if extract_pred in args.options:
extract_pred = args.options.index(extract_pred)
else:
extract_pred = random.choice(range(0,len(args.options)))
else:
num_fail += 1
extract_pred = random.choice(range(len(args.options))) # random choose one option
results_ans[str(qid)] = extract_pred
results_rationale[str(qid)] = pred
results_reference[str(qid)] = ref
scores = get_scores(results_ans, results_rationale, results_reference, os.path.join(args.data_root, "scienceqa/problems.json"))
preds = [pred.strip() for pred in preds]
output_data = {
"num_fail": num_fail,
"scores": scores,
"preds": preds,
"labels": targets}
output_prediction_file = os.path.join(save_dir,"predictions_ans_test.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))
# generate the rationale for the eval set
if args.prompt_format == "QCM-LE":
torch.cuda.empty_cache()
del predict_results, preds, targets
predict_results = trainer.predict(test_dataset=eval_set, max_length=args.output_len)
if trainer.is_world_process_zero():
if args.use_generate:
preds, targets = predict_results.predictions, predict_results.label_ids
else:
preds = predict_results.predictions[0]
targets = predict_results.label_ids
preds = preds.argmax(axis=2)
preds = tokenizer.batch_decode(
preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
targets = tokenizer.batch_decode(
targets, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
preds = [pred.strip() for pred in preds]
output_data = {"preds": preds,
"labels": targets}
output_prediction_file = os.path.join(save_dir,"predictions_ans_eval.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))
if __name__ == '__main__':
# training logger to log training progress
training_logger = Table(
Column("Epoch", justify="center"),
Column("Steps", justify="center"),
Column("Loss", justify="center"),
title="Training Status",
pad_edge=False,
box=box.ASCII,
)
args = parse_args()
print("args",args)
print('====Input Arguments====')
print(json.dumps(vars(args), indent=2, sort_keys=False))
random.seed(args.seed)
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
if args.img_type is not None:
problems, qids, name_maps, image_features = load_data_img(args) # probelms, test question ids, shot example ids
dataframe = {'problems':problems, 'qids':qids, 'name_maps': name_maps, 'image_features': image_features}
else:
problems, qids = load_data_std(args) # probelms, test question ids, shot example ids
dataframe = {'problems':problems, 'qids':qids}
T5Trainer(
dataframe=dataframe,
args = args
)