You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
Input In [37], in <module>
----> 1 b.to_pandas()
File ~/.local/lib/python3.8/site-packages/pyflink/table/table.py:998, in Table.to_pandas(self)
995 gateway = get_gateway()
996 max_arrow_batch_size = self._j_table.getTableEnvironment().getConfig().getConfiguration()\
997 .getInteger(gateway.jvm.org.apache.flink.python.PythonOptions.MAX_ARROW_BATCH_SIZE)
--> 998 batches_iterator = gateway.jvm.org.apache.flink.table.runtime.arrow.ArrowUtils\
999 .collectAsPandasDataFrame(self._j_table, max_arrow_batch_size)
1000 if batches_iterator.hasNext():
1001 import pytz
File ~/.local/lib/python3.8/site-packages/py4j/java_gateway.py:1285, in JavaMember.__call__(self, *args)
1279 command = proto.CALL_COMMAND_NAME +\
1280 self.command_header +\
1281 args_command +\
1282 proto.END_COMMAND_PART
1284 answer = self.gateway_client.send_command(command)
-> 1285 return_value = get_return_value(
1286 answer, self.gateway_client, self.target_id, self.name)
1288 for temp_arg in temp_args:
1289 temp_arg._detach()
File ~/.local/lib/python3.8/site-packages/py4j/protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling z:org.apache.flink.table.runtime.arrow.ArrowUtils.collectAsPandasDataFrame.
: java.lang.UnsupportedOperationException: Python vectorized UDF doesn't support logical type LEGACY('RAW', 'ANY<com.alibaba.alink.common.MTable>') currently.
at org.apache.flink.table.runtime.arrow.ArrowUtils$LogicalTypeToArrowTypeConverter.defaultMethod(ArrowUtils.java:947)
at org.apache.flink.table.runtime.arrow.ArrowUtils$LogicalTypeToArrowTypeConverter.defaultMethod(ArrowUtils.java:821)
at org.apache.flink.table.types.logical.utils.LogicalTypeDefaultVisitor.visit(LogicalTypeDefaultVisitor.java:202)
at org.apache.flink.table.types.logical.LegacyTypeInformationType.accept(LegacyTypeInformationType.java:107)
at org.apache.flink.table.runtime.arrow.ArrowUtils.toArrowField(ArrowUtils.java:227)
at org.apache.flink.table.runtime.arrow.ArrowUtils.lambda$toArrowSchema$0(ArrowUtils.java:218)
at java.util.stream.ReferencePipeline$3$1.accept(ReferencePipeline.java:193)
at java.util.ArrayList$ArrayListSpliterator.forEachRemaining(ArrayList.java:1384)
at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:482)
at java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:472)
at java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708)
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234)
at java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:566)
at org.apache.flink.table.runtime.arrow.ArrowUtils.toArrowSchema(ArrowUtils.java:219)
at org.apache.flink.table.runtime.arrow.ArrowUtils.collectAsPandasDataFrame(ArrowUtils.java:662)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
dependency list:
pandas==1.3.5
The text was updated successfully, but these errors were encountered:
Hi. to_pandas is provided by PyFlink, not PyAlink.
From the error message, it seems to_pandas does not support Alink-defined types: : java.lang.UnsupportedOperationException: Python vectorized UDF doesn't support logical type LEGACY('RAW', 'ANY<com.alibaba.alink.common.MTable>') currently.
In previous PyAlink version, this operator didn't use the Alink-defined type (MTable), so it worked.
sample code as below:
Get ERROR:
dependency list:
pandas==1.3.5
The text was updated successfully, but these errors were encountered: