From 13f4602999dd1de0873121717a94f9c8aba0f18c Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Tue, 30 Aug 2016 15:14:21 +0000 Subject: [PATCH] Refine image classification prediction code. ISSUE=4596311 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1431 1ad973e4-5ce8-4261-8a94-b56d1f490c56 --- demo/image_classification/classify.py | 1 - demo/image_classification/image_predictor.py | 27 --- .../{classify.sh => predict.sh} | 10 +- demo/image_classification/prediction.py | 155 ++++++++++++++++++ .../image_classification.md | 13 +- 5 files changed, 171 insertions(+), 35 deletions(-) delete mode 120000 demo/image_classification/classify.py delete mode 100644 demo/image_classification/image_predictor.py rename demo/image_classification/{classify.sh => predict.sh} (78%) mode change 100755 => 100644 create mode 100755 demo/image_classification/prediction.py diff --git a/demo/image_classification/classify.py b/demo/image_classification/classify.py deleted file mode 120000 index fefce7086ae7a6..00000000000000 --- a/demo/image_classification/classify.py +++ /dev/null @@ -1 +0,0 @@ -../model_zoo/resnet/classify.py \ No newline at end of file diff --git a/demo/image_classification/image_predictor.py b/demo/image_classification/image_predictor.py deleted file mode 100644 index 002cb412aa3563..00000000000000 --- a/demo/image_classification/image_predictor.py +++ /dev/null @@ -1,27 +0,0 @@ -# Copyright (c) 2016 Baidu, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import numpy as np -from optparse import OptionParser - -from py_paddle import swig_paddle, util, DataProviderWrapperConverter -from paddle.trainer.PyDataProviderWrapper import DenseSlot -from paddle.trainer.config_parser import parse_config - - - -""" -Will merge predictor from Qingqing. -""" diff --git a/demo/image_classification/classify.sh b/demo/image_classification/predict.sh old mode 100755 new mode 100644 similarity index 78% rename from demo/image_classification/classify.sh rename to demo/image_classification/predict.sh index f797631346f5a3..35ffae6c8cdc90 --- a/demo/image_classification/classify.sh +++ b/demo/image_classification/predict.sh @@ -14,9 +14,7 @@ # limitations under the License. set -e -python classify.py \ - --job=predict \ - --conf=vgg_16_cifar.py \ - --model=./cifar_vgg_model/pass-00299 \ - --multi_crop \ - --data=./example/test.list +model=cifar_vgg_model/pass-00299/ +image=data/cifar-out/test/airplane/seaplane_s_000978.png +use_gpu=1 +python prediction.py $model $image $use_gpu diff --git a/demo/image_classification/prediction.py b/demo/image_classification/prediction.py new file mode 100755 index 00000000000000..6d585ee094ef8e --- /dev/null +++ b/demo/image_classification/prediction.py @@ -0,0 +1,155 @@ +# Copyright (c) 2016 Baidu, Inc. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os,sys +import numpy as np +import logging +from PIL import Image +from optparse import OptionParser + +import paddle.utils.image_util as image_util + +from py_paddle import swig_paddle, util +from py_paddle import DataProviderWrapperConverter +from paddle.trainer.PyDataProviderWrapper import DenseSlot +from paddle.trainer.config_parser import parse_config + +logging.basicConfig(format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') +logging.getLogger().setLevel(logging.INFO) + +class ImageClassifier(): + def __init__(self, + train_conf, + use_gpu=True, + model_dir=None, + resize_dim=None, + crop_dim=None, + mean_file=None, + oversample=False, + is_color=True): + """ + train_conf: network configure. + model_dir: string, directory of model. + resize_dim: int, resized image size. + crop_dim: int, crop size. + mean_file: string, image mean file. + oversample: bool, oversample means multiple crops, namely five + patches (the four corner patches and the center + patch) as well as their horizontal reflections, + ten crops in all. + """ + self.train_conf = train_conf + self.model_dir = model_dir + if model_dir is None: + self.model_dir = os.path.dirname(train_conf) + + self.resize_dim = resize_dim + self.crop_dims = [crop_dim, crop_dim] + self.oversample = oversample + self.is_color = is_color + + self.transformer = image_util.ImageTransformer(is_color = is_color) + self.transformer.set_transpose((2,0,1)) + + self.mean_file = mean_file + mean = np.load(self.mean_file)['data_mean'] + mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1]) + self.transformer.set_mean(mean) # mean pixel + gpu = 1 if use_gpu else 0 + conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (gpu) + conf = parse_config(train_conf, conf_args) + swig_paddle.initPaddle("--use_gpu=%d" % (gpu)) + self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config) + assert isinstance(self.network, swig_paddle.GradientMachine) + self.network.loadParameters(self.model_dir) + + data_size = 3 * self.crop_dims[0] * self.crop_dims[1] + slots = [DenseSlot(data_size)] + self.converter = util.DataProviderWrapperConverter(False, slots) + + def get_data(self, img_path): + """ + 1. load image from img_path. + 2. resize or oversampling. + 3. transformer data: transpose, sub mean. + return K x H x W ndarray. + img_path: image path. + """ + image = image_util.load_image(img_path, self.is_color) + if self.oversample: + # image_util.resize_image: short side is self.resize_dim + image = image_util.resize_image(image, self.resize_dim) + image = np.array(image) + input = np.zeros((1, image.shape[0], image.shape[1], 3), + dtype=np.float32) + input[0] = image.astype(np.float32) + input = image_util.oversample(input, self.crop_dims) + else: + image = image.resize(self.crop_dims, Image.ANTIALIAS) + input = np.zeros((1, self.crop_dims[0], self.crop_dims[1], 3), + dtype=np.float32) + input[0] = np.array(image).astype(np.float32) + + data_in = [] + for img in input: + img = self.transformer.transformer(img).flatten() + data_in.append([img.tolist()]) + return data_in + + def forward(self, input_data): + in_arg = self.converter(input_data) + return self.network.forwardTest(in_arg) + + def forward(self, data, output_layer): + """ + input_data: py_paddle input data. + output_layer: specify the name of probability, namely the layer with + softmax activation. + return: the predicting probability of each label. + """ + input = self.converter(data) + self.network.forwardTest(input) + output = self.network.getLayerOutputs(output_layer) + # For oversampling, average predictions across crops. + # If not, the shape of output[name]: (1, class_number), + # the mean is also applicable. + return output[output_layer].mean(0) + + def predict(self, image=None, output_layer=None): + assert isinstance(image, basestring) + assert isinstance(output_layer, basestring) + data = self.get_data(image) + prob = self.forward(data, output_layer) + lab = np.argsort(-prob) + logging.info("Label of %s is: %d", image, lab[0]) + +if __name__ == '__main__': + image_size=32 + crop_size=32 + multi_crop=True + config="vgg_16_cifar.py" + output_layer="__fc_layer_1__" + mean_path="data/cifar-out/batches/batches.meta" + model_path=sys.argv[1] + image=sys.argv[2] + use_gpu=bool(int(sys.argv[3])) + + obj = ImageClassifier(train_conf=config, + model_dir=model_path, + resize_dim=image_size, + crop_dim=crop_size, + mean_file=mean_path, + use_gpu=use_gpu, + oversample=multi_crop) + obj.predict(image, output_layer) diff --git a/doc/demo/image_classification/image_classification.md b/doc/demo/image_classification/image_classification.md index b12a4e8f92d49c..ac2f772cd02621 100644 --- a/doc/demo/image_classification/image_classification.md +++ b/doc/demo/image_classification/image_classification.md @@ -170,8 +170,19 @@ After training finishes, the training and testing error curve will be saved to ` ## Prediction After we train the model, the model file as well as the model parameters are stored in path `./cifar_vgg_model/pass-%05d`. For example, the model of the 300-th pass is stored at `./cifar_vgg_model/pass-00299`. -To make a prediction for an image, such as `test.jpg`, one can run `sh classify.sh ./cifar_vgg_model/pass-00299 test.jpg`. The script will output the label of the classfiication. +To make a prediction for an image, one can run `predict.sh` as follows. The script will output the label of the classfiication. +``` +sh predict.sh +``` + +predict.sh: +``` +model=cifar_vgg_model/pass-00299/ +image=data/cifar-out/test/airplane/seaplane_s_000978.png +use_gpu=1 +python prediction.py $model $image $use_gpu +``` ## Exercise Train a image classification of birds using VGG model and CUB-200 dataset. The birds dataset can be downloaded here. It contains an image dataset with photos of 200 bird species (mostly North American).