forked from 920232796/bert_seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nezha_relation_extract_train.py
401 lines (352 loc) · 15.8 KB
/
nezha_relation_extract_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
"""
import sys
import random
import torch
from tqdm import tqdm
import json
from torch.utils.data import Dataset, DataLoader
from bert_seq2seq import Tokenizer, load_chinese_base_vocab
from bert_seq2seq import load_bert
import numpy as np
import time
vocab_path = "./state_dict/nezha-base-www/vocab.txt" # roberta模型字典的位置
model_name = "nezha" # 选择模型名字
model_path = "./state_dict/nezha-base-www/pytorch_model.bin" # roberta模型位置
model_save_path = "./nezha_relation_extract.bin"
all_p_path = "./corpus/三元组抽取/all_50_schemas" # 穷举所有p。
data_path = "./corpus/三元组抽取/train_data.json" # 训练集
data_dev = "./corpus/三元组抽取/dev_data.json" # 验证集
batch_size = 16
lr = 1e-5
word2idx = load_chinese_base_vocab(vocab_path)
idx2word = {v: k for k, v in word2idx.items()}
tokenizer = Tokenizer(word2idx)
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
D.append({
'text': l['text'],
'spo_list': [(spo['subject'], spo['predicate'], spo['object'])
for spo in l['spo_list']]
})
return D
predicate2id, id2predicate = {}, {}
with open(all_p_path, encoding="utf-8") as f:
for l in f:
l = json.loads(l)
if l['predicate'] not in predicate2id:
id2predicate[len(predicate2id)] = l['predicate']
predicate2id[l['predicate']] = len(predicate2id)
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
def search_subject(token_ids, subject_labels):
# subject_labels: (lens, 2)
if type(subject_labels) is torch.Tensor:
subject_labels = subject_labels.numpy()
if type(token_ids) is torch.Tensor:
token_ids = token_ids.cpu().numpy()
subjects = []
subject_ids = []
start = -1
end = -1
for i in range(len(token_ids)):
if subject_labels[i, 0] > 0.5:
start = i
for j in range(len(token_ids)):
if subject_labels[j, 1] > 0.5:
subject_labels[j, 1] = 0
end = j
break
if start == -1 or end == -1:
continue
subject = ""
for k in range(start, end + 1):
subject += idx2word[token_ids[k]]
# print(subject)
subject_ids.append([start, end])
start = -1
end = -1
subjects.append(subject)
return subjects, subject_ids
def search_object(token_ids, object_labels):
objects = []
if type(object_labels) is torch.Tensor:
object_labels = object_labels.numpy()
if type(token_ids) is torch.Tensor:
token_ids = token_ids.cpu().numpy()
# print(object_labels.sum())
start = np.where(object_labels[:, :, 0] > 0.5)
end = np.where(object_labels[:, :, 1] > 0.5)
for _start, predicate1 in zip(*start):
for _end, predicate2 in zip(*end):
if _start <= _end and predicate1 == predicate2:
object_text = ""
for k in range(_start, _end + 1):
# print(token_ids(k))
object_text += idx2word[token_ids[k]]
objects.append(
(id2predicate[predicate1], object_text)
)
break
return objects
class ExtractDataset(Dataset):
"""
针对特定数据集,定义一个相关的取数据的方式
"""
def __init__(self, data):
## 一般init函数是加载所有数据
super(ExtractDataset, self).__init__()
# 读原始数据
self.data = data
self.idx2word = {k: v for v, k in word2idx.items()}
def __getitem__(self, i):
## 得到单个数据
# print(i)
d = self.data[i]
token_ids, segment_ids = tokenizer.encode(d["text"], max_length=256)
spoes = {}
for s, p, o in d['spo_list']:
s = tokenizer.encode(s)[0][1:-1]
p = predicate2id[p]
o = tokenizer.encode(o)[0][1:-1]
s_idx = search(s, token_ids)
o_idx = search(o, token_ids)
if s_idx != -1 and o_idx != -1:
s = (s_idx, s_idx + len(s) - 1)
o = (o_idx, o_idx + len(o) - 1, p)
if s not in spoes:
spoes[s] = []
spoes[s].append(o)
if spoes:
# subject标签
subject_labels = np.zeros((len(token_ids), 2))
for s in spoes:
subject_labels[s[0], 0] = 1
subject_labels[s[1], 1] = 1
# 随机选一个subject
start, end = random.choice(list(spoes.keys()))
subject_ids = (start, end)
# 对应的object标签
object_labels = np.zeros((len(token_ids), len(predicate2id), 2))
for o in spoes.get(subject_ids, []):
object_labels[o[0], o[2], 0] = 1
object_labels[o[1], o[2], 1] = 1
output = {
"token_ids": token_ids,
"token_type_ids": segment_ids,
"subject_labels": subject_labels,
"subject_ids": subject_ids,
"object_labels": object_labels,
}
return output
else:
return self.__getitem__(i + 1)
def __len__(self):
return len(self.data)
def collate_fn(batch):
"""
动态padding, batch为一部分sample
"""
def padding(inputs, max_length=None, padding=0):
"""Numpy函数,将序列padding到同一长度
"""
if max_length is None:
max_length = max([len(x) for x in inputs])
pad_width = [(0, 0) for _ in np.shape(inputs[0])]
outputs = []
for x in inputs:
x = x[:max_length]
pad_width[0] = (0, max_length - len(x))
x = np.pad(x, pad_width, 'constant', constant_values=padding)
outputs.append(x)
return np.array(outputs)
token_ids = [data["token_ids"] for data in batch]
max_length = max([len(t) for t in token_ids])
token_type_ids = [data["token_type_ids"] for data in batch]
subject_labels = [data["subject_labels"] for data in batch]
object_labels = [data["object_labels"] for data in batch]
subject_ids = [data["subject_ids"] for data in batch]
token_ids_padded = padding(token_ids, max_length)
token_type_ids_padded = padding(token_type_ids, max_length)
subject_labels_padded = padding(subject_labels, max_length)
object_labels_padded = padding(object_labels, max_length)
subject_ids = np.array(subject_ids)
return torch.tensor(token_ids_padded, dtype=torch.long), torch.tensor(token_type_ids_padded, dtype=torch.float32), \
torch.tensor(subject_labels_padded, dtype=torch.long), torch.tensor(object_labels_padded, dtype=torch.long), \
torch.tensor(subject_ids, dtype=torch.long)
class ExtractTrainer:
def __init__(self):
# 加载数据
self.data = load_data(data_path)
self.data_dev = load_data(data_dev)
# 判断是否有可用GPU
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: " + str(self.device))
# 定义模型
self.bert_model = load_bert(word2idx, model_name=model_name, model_class="relation_extrac",
target_size=len(predicate2id))
# 加载预训练的模型参数~
self.bert_model.load_pretrain_params(model_path)
# 将模型发送到计算设备(GPU或CPU)
self.bert_model.set_device(self.device)
# 声明需要优化的参数
self.optim_parameters = list(self.bert_model.parameters())
self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3)
# 声明自定义的数据加载器
dataset = ExtractDataset(self.data)
self.dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
self.best_f1 = 0.0
def train(self, epoch):
# 一个epoch的训练
self.bert_model.train()
self.iteration(epoch, dataloader=self.dataloader, train=True)
def save(self, save_path):
"""
保存模型
"""
self.bert_model.save_all_params(save_path)
print("{} saved!".format(save_path))
def test(self, data_dev):
self.bert_model.eval()
f = open('./state_dict/dev_pred.json', 'w', encoding='utf-8')
X, Y, Z = 1e-10, 1e-10, 1e-10
for tspo in tqdm(data_dev):
text = tspo["text"]
spo = tspo["spo_list"]
token_ids, segment_ids = tokenizer.encode(text, max_length=256)
token_ids = torch.tensor(token_ids, device=self.device).view(1, -1)
# 预测 subject
subject_preds = self.bert_model.predict_subject(token_ids)
# gpu 写法
s = np.where(subject_preds.cuda().data.cpu().numpy()[0].T[0] > 0.5)[0]
e = np.where(subject_preds.cuda().data.cpu().numpy()[0].T[1] > 0.5)[0]
subject_ix = []
for i in s:
end = e[e > i]
if len(end) > 0:
subject_ix.append((i, end[0]))
# for i,j in subject_ix:
# print(tokenizer.decode(token_ids[0][i:j+1].numpy()))
spoes = []
for i in subject_ix:
subject_id = np.array([i])
object_predicate = self.bert_model.predict_object_predicate(token_ids,
torch.tensor(subject_id,device=self.device, dtype=torch.long))
for object_pred in object_predicate:
start = np.where(object_pred.cuda().data.cpu().numpy()[:, :, 0] > 0.5)
end = np.where(object_pred.cuda().data.cpu().numpy()[:, :, 1] > 0.5)
for _start, predicate1 in zip(*start):
for _end, predicate2 in zip(*end):
if _start <= _end and predicate1 == predicate2:
spoes.append(
(i, predicate1,
(_start, _end))
)
break
spoes = [(tokenizer.decode(token_ids.cuda().data.cpu().numpy()[0][i[0]:i[1] + 1]).replace(" ", ""), id2predicate[p],
tokenizer.decode(token_ids.cuda().data.cpu().numpy()[0][j[0]:j[1] + 1]).replace(" ", "")) for i, p, j in spoes]
R = set(spoes)
T = set(spo)
X += len(R & T)
Y += len(R)
Z += len(T)
s = json.dumps({
'text': tspo['text'],
'spo_list': list(spo),
'spo_list_pred': list(spoes),
'new': list(R - T),
'lack': list(T - R),
},
ensure_ascii=False,
indent=4)
f.write(s + '\n')
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
f.close()
self.bert_model.train()
return f1, recall, precision
def iteration(self, epoch, dataloader, train=True):
total_loss = 0
start_time = time.time() # 得到当前时间
step = 0
report_loss = 0.0
last_report_loss = 10000000.0
for token_ids, token_type_ids, subject_lables, object_labels, subject_ids in tqdm(dataloader):
step += 1
if step % 300 == 0:
print("report loss is " + str(report_loss))
if report_loss > last_report_loss:
self.optimizer.param_groups[0]['lr'] = self.optimizer.param_groups[0]['lr'] / 2
print("lr is " + str(self.optimizer.param_groups[0]["lr"]))
last_report_loss = report_loss
report_loss = 0.0
text = ["查尔斯·阿兰基斯(Charles Aránguiz),1989年4月17日出生于智利圣地亚哥,智利职业足球运动员,司职中场,效力于德国足球甲级联赛勒沃库森足球俱乐部",
"李治即位后,萧淑妃受宠,王皇后为了排挤萧淑妃,答应李治让身在感业寺的武则天续起头发,重新纳入后宫",
"《星空黑夜传奇》是连载于起点中文网的网络小说,作者是啤酒的罪孽"]
for d in text:
with torch.no_grad():
token_ids_test, segment_ids = tokenizer.encode(d, max_length=256)
token_ids_test = torch.tensor(token_ids_test, device=self.device).view(1, -1)
# 先预测subject
pred_subject = self.bert_model.predict_subject(token_ids_test)
pred_subject = pred_subject.squeeze(0)
subject_texts, subject_idss = search_subject(token_ids_test[0], pred_subject.cpu())
if len(subject_texts) == 0:
print("no subject predicted~")
for sub_text, sub_ids in zip(subject_texts, subject_idss):
print("subject is " + str(sub_text))
sub_ids = torch.tensor(sub_ids, device=self.device).view(1, -1)
# print("sub_ids shape is " + str(sub_ids))
object_p_pred = self.bert_model.predict_object_predicate(token_ids_test, sub_ids)
res = search_object(token_ids_test[0], object_p_pred.squeeze(0).cpu())
print("p and obj is " + str(res))
if step % 2000 == 0:
f1, recall, acc = self.test(self.data_dev)
if f1 > self.best_f1:
self.best_f1 = f1
# 保存模型
self.save(model_save_path)
print("dev f1: " + str(f1) + " .acc: " + str(acc) + " .recall: " + str(recall) + " best_f1:" + str(self.best_f1))
# 因为传入了target标签,因此会计算loss并且返回
predictions, loss = self.bert_model(token_ids,
subject_ids,
subject_labels=subject_lables,
object_labels=object_labels,
)
# 反向传播
if train:
# 清空之前的梯度
self.optimizer.zero_grad()
# 反向传播, 获取新的梯度
loss.backward()
torch.nn.utils.clip_grad_norm_(self.bert_model.parameters(), 5.0)
# 用获取的梯度更新模型参数
self.optimizer.step()
# 为计算当前epoch的平均loss
total_loss += loss.item()
report_loss += loss.item()
end_time = time.time()
spend_time = end_time - start_time
# 打印训练信息
print("epoch is " + str(epoch) + ". loss is " + str(total_loss) + ". spend time is " + str(spend_time))
# f1, recall, acc = self.test(self.data_dev)
# if f1 > self.best_f1:
# self.best_f1 = f1
# # 保存模型
# self.save(model_save_path)
# print("dev f1: " + str(f1) + " .acc: " + str(acc) + " .recall: " + str(recall) + " best_f1:" + str(self.best_f1))
if __name__ == "__main__":
trainer = ExtractTrainer()
train_epoches = 50
for epoch in range(train_epoches):
# 训练一个epoch
trainer.train(epoch)