forked from 920232796/bert_seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroberta_coarsness_NER_train.py
189 lines (161 loc) · 6.54 KB
/
roberta_coarsness_NER_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
## 粗粒度ner不加crf层的例子
import torch
from tqdm import tqdm
import time
from torch.utils.data import Dataset, DataLoader
from bert_seq2seq import Tokenizer, load_chinese_base_vocab
from bert_seq2seq import load_bert
# 共12个标签
target = ["O", "B-LOC", "I-LOC", "B-PER", "I-PER", "B-ORG", "I-ORG"]
data_path = "./corpus/粗粒度NER/粗粒度NER.txt"
vocab_path = "./state_dict/roberta_wwm_vocab.txt" # roberta模型字典的位置
model_name = "roberta" # 选择模型名字
model_path = "./state_dict/roberta_wwm_pytorch_model.bin" # roberta模型位置
recent_model_path = "" # 用于把已经训练好的模型继续训练
model_save_path = "./bert_ner_model.bin"
batch_size = 16
lr = 1e-5
word2idx = load_chinese_base_vocab(vocab_path)
def read_corpus(data_path):
"""
读原始数据
"""
sents_src = []
sents_tgt = []
with open(data_path) as f:
lines = f.readlines()
row = ""
t = [0]
for line in lines:
if line == "\n":
t.append(0)
sents_src.append(row)
sents_tgt.append(t)
row = ""
t = [0]
continue
line = line.split(" ")
row = row + line[0]
t.append(target.index(line[1].strip("\n")))
return sents_src, sents_tgt
## 自定义dataset
class NERDataset(Dataset):
"""
针对特定数据集,定义一个相关的取数据的方式
"""
def __init__(self, sents_src, sents_tgt) :
## 一般init函数是加载所有数据
super(NERDataset, self).__init__()
# 读原始数据
# self.sents_src, self.sents_tgt = read_corpus(poem_corpus_dir)
self.sents_src = sents_src
self.sents_tgt = sents_tgt
self.idx2word = {k: v for v, k in word2idx.items()}
self.tokenizer = Tokenizer(word2idx)
def __getitem__(self, i):
## 得到单个数据
# print(i)
src = self.sents_src[i]
tgt = self.sents_tgt[i]
token_ids, token_type_ids = self.tokenizer.encode(src)
output = {
"token_ids": token_ids,
"token_type_ids": token_type_ids,
"target_id": tgt
}
return output
def __len__(self):
return len(self.sents_src)
def collate_fn(batch):
"""
动态padding, batch为一部分sample
"""
def padding(indice, max_length, pad_idx=0):
"""
pad 函数
"""
pad_indice = [item + [pad_idx] * max(0, max_length - len(item)) for item in indice]
return torch.tensor(pad_indice)
token_ids = [data["token_ids"] for data in batch]
max_length = max([len(t) for t in token_ids])
token_type_ids = [data["token_type_ids"] for data in batch]
target_ids = [data["target_id"] for data in batch]
token_ids_padded = padding(token_ids, max_length)
token_type_ids_padded = padding(token_type_ids, max_length)
# target_ids_padded = token_ids_padded[:, 1:].contiguous()
target_ids_padded = padding(target_ids, max_length)
return token_ids_padded, token_type_ids_padded, target_ids_padded
class Trainer:
def __init__(self):
# 加载数据
self.sents_src, self.sents_tgt = read_corpus(data_path)
self.tokenier = Tokenizer(word2idx)
# 判断是否有可用GPU
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: " + str(self.device))
# 定义模型
self.bert_model = load_bert(word2idx, model_name=model_name, model_class="sequence_labeling", target_size=len(target))
## 加载预训练的模型参数~
self.bert_model.load_pretrain_params(model_path)
# 将模型发送到计算设备(GPU或CPU)
self.bert_model.set_device(self.device)
# 声明需要优化的参数
self.optim_parameters = list(self.bert_model.parameters())
self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3)
# 声明自定义的数据加载器
dataset = NERDataset(self.sents_src, self.sents_tgt)
self.dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
def train(self, epoch):
# 一个epoch的训练
self.bert_model.train()
self.iteration(epoch, dataloader=self.dataloader, train=True)
def save(self, save_path):
"""
保存模型
"""
self.bert_model.save_all_params(save_path)
print("{} saved!".format(save_path))
def iteration(self, epoch, dataloader, train=True):
total_loss = 0
start_time = time.time() ## 得到当前时间
step = 0
for token_ids, token_type_ids, target_ids in tqdm(dataloader,position=0, leave=True):
step += 1
if step % 500 == 0:
self.bert_model.eval()
test_data = ["日寇在京掠夺文物详情。", "以书结缘,把欧美,港台流行的食品类食谱汇集一堂"]
for text in test_data:
text, text_ids = self.tokenier.encode(text)
text = torch.tensor(text, device=self.device).view(1, -1)
out = self.bert_model(text).squeeze(0)
out_target = torch.argmax(out, dim=-1)
decode_target = [target[i.item()] for i in out_target]
print(decode_target)
# print(target[torch.argmax(self.bert_model(text)).item()])
self.bert_model.train()
# 因为传入了target标签,因此会计算loss并且返回
predictions, loss = self.bert_model(token_ids,
labels=target_ids
)
# 反向传播
if train:
# 清空之前的梯度
self.optimizer.zero_grad()
# 反向传播, 获取新的梯度
loss.backward()
# 用获取的梯度更新模型参数
self.optimizer.step()
# 为计算当前epoch的平均loss
total_loss += loss.item()
end_time = time.time()
spend_time = end_time - start_time
# 打印训练信息
print("epoch is " + str(epoch)+". loss is " + str(total_loss) + ". spend time is "+ str(spend_time))
# 保存模型
self.save(model_save_path)
if __name__ == '__main__':
trainer = Trainer()
train_epoches = 25
for epoch in range(train_epoches):
# 训练一个epoch
trainer.train(epoch)