forked from Kelang-Tian/ST-MGAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult.py
26 lines (23 loc) · 947 Bytes
/
result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np
import util
import torch
def evaluate(pred, target):
mape = util.masked_mape(pred, target, 0.0).item()
rmse = util.masked_rmse(pred, target, 0.0).item()
return mape, rmse
def evaluate_all(pred, target):
mape = util.masked_mape(pred, target, 0.0).item()
rmse = util.masked_rmse(pred, target, 0.0).item()
mae = util.masked_mae(pred, target, 0.0).item()
return mape, rmse, mae
with np.load("experiment/PEMS04_02/result.npz") as data:
pred = torch.tensor(data["pred"])
target = torch.tensor(data["target"])
print(target.shape)
for j in range(3):
for i in range(12):
pred_t = pred[:, :i + 1, :, j: j + 1]
real_target = target[:, :i + 1, :, j: j + 1]
evaluation = evaluate_all(pred_t, real_target)
log = 'test for horizon {:d}, {:.4f} {:.4f} {:.4f}'
print(log.format(i + 1, evaluation[2], evaluation[0], evaluation[1]))