Intuitive Bloomberg data API
Below are main features. Jupyter notebook examples can be found here.
- Excel compatible inputs
- Straightforward intraday bar requests
- Subscriptions
-
Bloomberg C++ SDK version 3.12.1 or higher:
-
Downlaod C++ Experimental Release (for latest python API version
3.14.0
, this can only be downloaded thruWAPI<GO>
in terminal). -
Copy
blpapi3_32.dll
andblpapi3_64.dll
underbin
folder to BloombergBLPAPI_ROOT
folder, normallyblp/DAPI
-
Bloomberg Open API (need to install manually as shown below)
-
numpy, pandas, ruamel.yaml and pyarrow
pip install blpapi --index-url=https://bloomberg.bintray.com/pip/simple
pip install xbbg
0.7.0 - bdh
preserves columns orders (both tickers and flds).
timeout
argument is available for all queries - bdtick
usually takes longer to respond -
can use timeout=1000
for example if keep getting empty DataFrame.
0.6.6 - Add flexibility to use reference exchange as market hour definition
(so that it's not necessary to add .yml
for new tickers, provided that the exchange was defined
in /xbbg/markets/exch.yml
). See example of bdib
below for more details.
0.6.0 - Speed improvements and tick data availablity
0.5.0 - Rewritten library to add subscription, BEQS, simplify interface and remove dependency of pdblp
0.1.22 - Remove PyYAML dependency due to security vulnerability
0.1.17 - Add adjust
argument in bdh
for easier dividend / split adjustments
In [1]: from xbbg import blp
BDP
example:
In [2]: blp.bdp(tickers='NVDA US Equity', flds=['Security_Name', 'GICS_Sector_Name'])
Out[2]:
security_name gics_sector_name
NVDA US Equity NVIDIA Corp Information Technology
BDP
with overrides:
In [3]: blp.bdp('AAPL US Equity', 'Eqy_Weighted_Avg_Px', VWAP_Dt='20181224')
Out[3]:
eqy_weighted_avg_px
AAPL US Equity 148.75
BDH
example:
In [4]: blp.bdh(
...: tickers='SPX Index', flds=['high', 'low', 'last_price'],
...: start_date='2018-10-10', end_date='2018-10-20',
...: )
Out[4]:
SPX Index
high low last_price
2018-10-10 2,874.02 2,784.86 2,785.68
2018-10-11 2,795.14 2,710.51 2,728.37
2018-10-12 2,775.77 2,729.44 2,767.13
2018-10-15 2,775.99 2,749.03 2,750.79
2018-10-16 2,813.46 2,766.91 2,809.92
2018-10-17 2,816.94 2,781.81 2,809.21
2018-10-18 2,806.04 2,755.18 2,768.78
2018-10-19 2,797.77 2,760.27 2,767.78
BDH
example with Excel compatible inputs:
In [5]: blp.bdh(
...: tickers='SHCOMP Index', flds=['high', 'low', 'last_price'],
...: start_date='2018-09-26', end_date='2018-10-20',
...: Per='W', Fill='P', Days='A',
...: )
Out[5]:
SHCOMP Index
high low last_price
2018-09-28 2,827.34 2,771.16 2,821.35
2018-10-05 2,827.34 2,771.16 2,821.35
2018-10-12 2,771.94 2,536.66 2,606.91
2018-10-19 2,611.97 2,449.20 2,550.47
BDH
without adjustment for dividends and splits:
In [6]: blp.bdh(
...: 'AAPL US Equity', 'px_last', '20140605', '20140610',
...: CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False
...: )
Out[6]:
AAPL US Equity
px_last
2014-06-05 647.35
2014-06-06 645.57
2014-06-09 93.70
2014-06-10 94.25
BDH
adjusted for dividends and splits:
In [7]: blp.bdh(
...: 'AAPL US Equity', 'px_last', '20140605', '20140610',
...: CshAdjNormal=True, CshAdjAbnormal=True, CapChg=True
...: )
Out[7]:
AAPL US Equity
px_last
2014-06-05 85.45
2014-06-06 85.22
2014-06-09 86.58
2014-06-10 87.09
BDS
example:
In [8]: blp.bds('AAPL US Equity', 'DVD_Hist_All', DVD_Start_Dt='20180101', DVD_End_Dt='20180531')
Out[8]:
declared_date ex_date record_date payable_date dividend_amount dividend_frequency dividend_type
AAPL US Equity 2018-05-01 2018-05-11 2018-05-14 2018-05-17 0.73 Quarter Regular Cash
AAPL US Equity 2018-02-01 2018-02-09 2018-02-12 2018-02-15 0.63 Quarter Regular Cash
- Intraday bars
BDIB
example:
In [9]: blp.bdib(ticker='BHP AU Equity', dt='2018-10-17').tail()
Out[9]:
BHP AU Equity
open high low close volume num_trds
2018-10-17 15:56:00+11:00 33.62 33.65 33.62 33.64 16660 126
2018-10-17 15:57:00+11:00 33.65 33.65 33.63 33.64 13875 156
2018-10-17 15:58:00+11:00 33.64 33.65 33.62 33.63 16244 159
2018-10-17 15:59:00+11:00 33.63 33.63 33.61 33.62 16507 167
2018-10-17 16:10:00+11:00 33.66 33.66 33.66 33.66 1115523 216
Above example works because 1) AU
in equity ticker is mapped to EquityAustralia
in
markets/assets.yml
, and 2) EquityAustralia
is defined in markets/exch.yml
.
To add new mappings, define BBG_ROOT
in sys path and add assets.yml
and
exch.yml
under BBG_ROOT/markets
.
New in 0.6.6 - if exchange is defined in /xbbg/markets/exch.yml
, can use ref
to look for
relevant exchange market hours. Both ref='ES1 Index'
and ref='CME'
work for this example:
In [10]: blp.bdib(ticker='ESM0 Index', dt='2020-03-20', ref='ES1 Index').tail()
out[10]:
ESM0 Index
open high low close volume num_trds value
2020-03-20 16:55:00-04:00 2,260.75 2,262.25 2,260.50 2,262.00 412 157 931,767.00
2020-03-20 16:56:00-04:00 2,262.25 2,267.00 2,261.50 2,266.75 812 209 1,838,823.50
2020-03-20 16:57:00-04:00 2,266.75 2,270.00 2,264.50 2,269.00 1136 340 2,576,590.25
2020-03-20 16:58:00-04:00 2,269.25 2,269.50 2,261.25 2,265.75 1077 408 2,439,276.00
2020-03-20 16:59:00-04:00 2,265.25 2,272.00 2,265.00 2,266.50 1271 378 2,882,978.25
- Intraday bars within market session:
In [11]: blp.bdib(ticker='7974 JT Equity', dt='2018-10-17', session='am_open_30').tail()
Out[11]:
7974 JT Equity
open high low close volume num_trds
2018-10-17 09:27:00+09:00 39,970.00 40,020.00 39,970.00 39,990.00 10800 44
2018-10-17 09:28:00+09:00 39,990.00 40,020.00 39,980.00 39,980.00 6300 33
2018-10-17 09:29:00+09:00 39,970.00 40,000.00 39,960.00 39,970.00 3300 21
2018-10-17 09:30:00+09:00 39,960.00 40,010.00 39,950.00 40,000.00 3100 19
2018-10-17 09:31:00+09:00 39,990.00 40,000.00 39,980.00 39,990.00 2000 15
- Corporate earnings:
In [12]: blp.earning('AMD US Equity', by='Geo', Eqy_Fund_Year=2017, Number_Of_Periods=1)
Out[12]:
level fy2017 fy2017_pct
Asia-Pacific 1.00 3,540.00 66.43
China 2.00 1,747.00 49.35
Japan 2.00 1,242.00 35.08
Singapore 2.00 551.00 15.56
United States 1.00 1,364.00 25.60
Europe 1.00 263.00 4.94
Other Countries 1.00 162.00 3.04
- Dividends:
In [13]: blp.dividend(['C US Equity', 'MS US Equity'], start_date='2018-01-01', end_date='2018-05-01')
Out[13]:
dec_date ex_date rec_date pay_date dvd_amt dvd_freq dvd_type
C US Equity 2018-01-18 2018-02-02 2018-02-05 2018-02-23 0.32 Quarter Regular Cash
MS US Equity 2018-04-18 2018-04-27 2018-04-30 2018-05-15 0.25 Quarter Regular Cash
MS US Equity 2018-01-18 2018-01-30 2018-01-31 2018-02-15 0.25 Quarter Regular Cash
New in 0.1.17 - Dividend adjustment can be simplified to one parameter adjust
:
BDH
without adjustment for dividends and splits:
In [14]: blp.bdh('AAPL US Equity', 'px_last', '20140606', '20140609', adjust='-')
Out[14]:
AAPL US Equity
px_last
2014-06-06 645.57
2014-06-09 93.70
BDH
adjusted for dividends and splits:
In [15]: blp.bdh('AAPL US Equity', 'px_last', '20140606', '20140609', adjust='all')
Out[15]:
AAPL US Equity
px_last
2014-06-06 85.22
2014-06-09 86.58
If BBG_ROOT
is provided in os.environ
, data can be saved locally.
By default, local storage is preferred than Bloomberg for all queries.
Noted that local data usage must be compliant with Bloomberg Datafeed Addendum
(full description in DAPI<GO>
):
To access Bloomberg data via the API (and use that data in Microsoft Excel), your company must sign the 'Datafeed Addendum' to the Bloomberg Agreement. This legally binding contract describes the terms and conditions of your use of the data and information available via the API (the "Data"). The most fundamental requirement regarding your use of Data is that it cannot leave the local PC you use to access the BLOOMBERG PROFESSIONAL service.
Docs | |
Build | |
Coverage | |
Quality | |
License |