forked from mackyle/sqlite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcache1.c
960 lines (886 loc) · 30.7 KB
/
pcache1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*
** 2008 November 05
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements the default page cache implementation (the
** sqlite3_pcache interface). It also contains part of the implementation
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
** If the default page cache implementation is overriden, then neither of
** these two features are available.
*/
#include "sqliteInt.h"
typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;
/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
** of one or more PCaches that are able to recycle each others unpinned
** pages when they are under memory pressure. A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
**
** (1) Every PCache is the sole member of its own PGroup. There is
** one PGroup per PCache.
**
** (2) There is a single global PGroup that all PCaches are a member
** of.
**
** Mode 1 uses more memory (since PCache instances are not able to rob
** unused pages from other PCaches) but it also operates without a mutex,
** and is therefore often faster. Mode 2 requires a mutex in order to be
** threadsafe, but is able recycle pages more efficient.
**
** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
** PGroup which is the pcache1.grp global variable and its mutex is
** SQLITE_MUTEX_STATIC_LRU.
*/
struct PGroup {
sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
int nMaxPage; /* Sum of nMax for purgeable caches */
int nMinPage; /* Sum of nMin for purgeable caches */
int mxPinned; /* nMaxpage + 10 - nMinPage */
int nCurrentPage; /* Number of purgeable pages allocated */
PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
};
/* Each page cache is an instance of the following object. Every
** open database file (including each in-memory database and each
** temporary or transient database) has a single page cache which
** is an instance of this object.
**
** Pointers to structures of this type are cast and returned as
** opaque sqlite3_pcache* handles.
*/
struct PCache1 {
/* Cache configuration parameters. Page size (szPage) and the purgeable
** flag (bPurgeable) are set when the cache is created. nMax may be
** modified at any time by a call to the pcache1CacheSize() method.
** The PGroup mutex must be held when accessing nMax.
*/
PGroup *pGroup; /* PGroup this cache belongs to */
int szPage; /* Size of allocated pages in bytes */
int bPurgeable; /* True if cache is purgeable */
unsigned int nMin; /* Minimum number of pages reserved */
unsigned int nMax; /* Configured "cache_size" value */
unsigned int mxPinned; /* nMax*9/10 */
/* Hash table of all pages. The following variables may only be accessed
** when the accessor is holding the PGroup mutex.
*/
unsigned int nRecyclable; /* Number of pages in the LRU list */
unsigned int nPage; /* Total number of pages in apHash */
unsigned int nHash; /* Number of slots in apHash[] */
PgHdr1 **apHash; /* Hash table for fast lookup by key */
unsigned int iMaxKey; /* Largest key seen since xTruncate() */
};
/*
** Each cache entry is represented by an instance of the following
** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
** directly before this structure in memory (see the PGHDR1_TO_PAGE()
** macro below).
*/
struct PgHdr1 {
unsigned int iKey; /* Key value (page number) */
PgHdr1 *pNext; /* Next in hash table chain */
PCache1 *pCache; /* Cache that currently owns this page */
PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
};
/*
** Free slots in the allocator used to divide up the buffer provided using
** the SQLITE_CONFIG_PAGECACHE mechanism.
*/
struct PgFreeslot {
PgFreeslot *pNext; /* Next free slot */
};
/*
** Global data used by this cache.
*/
static SQLITE_WSD struct PCacheGlobal {
PGroup grp; /* The global PGroup for mode (2) */
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
** fixed at sqlite3_initialize() time and do not require mutex protection.
** The nFreeSlot and pFree values do require mutex protection.
*/
int isInit; /* True if initialized */
int szSlot; /* Size of each free slot */
int nSlot; /* The number of pcache slots */
int nReserve; /* Try to keep nFreeSlot above this */
void *pStart, *pEnd; /* Bounds of pagecache malloc range */
/* Above requires no mutex. Use mutex below for variable that follow. */
sqlite3_mutex *mutex; /* Mutex for accessing the following: */
int nFreeSlot; /* Number of unused pcache slots */
PgFreeslot *pFree; /* Free page blocks */
/* The following value requires a mutex to change. We skip the mutex on
** reading because (1) most platforms read a 32-bit integer atomically and
** (2) even if an incorrect value is read, no great harm is done since this
** is really just an optimization. */
int bUnderPressure; /* True if low on PAGECACHE memory */
} pcache1_g;
/*
** All code in this file should access the global structure above via the
** alias "pcache1". This ensures that the WSD emulation is used when
** compiling for systems that do not support real WSD.
*/
#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
/*
** When a PgHdr1 structure is allocated, the associated PCache1.szPage
** bytes of data are located directly before it in memory (i.e. the total
** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
** an argument and returns a pointer to the associated block of szPage
** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
** a pointer to a block of szPage bytes of data and the return value is
** a pointer to the associated PgHdr1 structure.
**
** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X );
*/
#define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage)
#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
/*
** Macros to enter and leave the PCache LRU mutex.
*/
#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
/*
** This function is called during initialization if a static buffer is
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
** enough to contain 'n' buffers of 'sz' bytes each.
**
** This routine is called from sqlite3_initialize() and so it is guaranteed
** to be serialized already. There is no need for further mutexing.
*/
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
if( pcache1.isInit ){
PgFreeslot *p;
sz = ROUNDDOWN8(sz);
pcache1.szSlot = sz;
pcache1.nSlot = pcache1.nFreeSlot = n;
pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
pcache1.pStart = pBuf;
pcache1.pFree = 0;
pcache1.bUnderPressure = 0;
while( n-- ){
p = (PgFreeslot*)pBuf;
p->pNext = pcache1.pFree;
pcache1.pFree = p;
pBuf = (void*)&((char*)pBuf)[sz];
}
pcache1.pEnd = pBuf;
}
}
/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
** such buffer exists or there is no space left in it, this function falls
** back to sqlite3Malloc().
**
** Multiple threads can run this routine at the same time. Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
void *p = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
if( nByte<=pcache1.szSlot ){
sqlite3_mutex_enter(pcache1.mutex);
p = (PgHdr1 *)pcache1.pFree;
if( p ){
pcache1.pFree = pcache1.pFree->pNext;
pcache1.nFreeSlot--;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot>=0 );
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
}
sqlite3_mutex_leave(pcache1.mutex);
}
if( p==0 ){
/* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
** it from sqlite3Malloc instead.
*/
p = sqlite3Malloc(nByte);
if( p ){
int sz = sqlite3MallocSize(p);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
}
sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
}
return p;
}
/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
if( p==0 ) return;
if( p>=pcache1.pStart && p<pcache1.pEnd ){
PgFreeslot *pSlot;
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
pSlot = (PgFreeslot*)p;
pSlot->pNext = pcache1.pFree;
pcache1.pFree = pSlot;
pcache1.nFreeSlot++;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot<=pcache1.nSlot );
sqlite3_mutex_leave(pcache1.mutex);
}else{
int iSize;
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
iSize = sqlite3MallocSize(p);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
sqlite3_free(p);
}
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** Return the size of a pcache allocation
*/
static int pcache1MemSize(void *p){
if( p>=pcache1.pStart && p<pcache1.pEnd ){
return pcache1.szSlot;
}else{
int iSize;
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
iSize = sqlite3MallocSize(p);
sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
return iSize;
}
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
/*
** Allocate a new page object initially associated with cache pCache.
*/
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
int nByte = sizeof(PgHdr1) + pCache->szPage;
void *pPg = pcache1Alloc(nByte);
PgHdr1 *p;
if( pPg ){
p = PAGE_TO_PGHDR1(pCache, pPg);
if( pCache->bPurgeable ){
pCache->pGroup->nCurrentPage++;
}
}else{
p = 0;
}
return p;
}
/*
** Free a page object allocated by pcache1AllocPage().
**
** The pointer is allowed to be NULL, which is prudent. But it turns out
** that the current implementation happens to never call this routine
** with a NULL pointer, so we mark the NULL test with ALWAYS().
*/
static void pcache1FreePage(PgHdr1 *p){
if( ALWAYS(p) ){
PCache1 *pCache = p->pCache;
if( pCache->bPurgeable ){
pCache->pGroup->nCurrentPage--;
}
pcache1Free(PGHDR1_TO_PAGE(p));
}
}
/*
** Malloc function used by SQLite to obtain space from the buffer configured
** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
** exists, this function falls back to sqlite3Malloc().
*/
void *sqlite3PageMalloc(int sz){
return pcache1Alloc(sz);
}
/*
** Free an allocated buffer obtained from sqlite3PageMalloc().
*/
void sqlite3PageFree(void *p){
pcache1Free(p);
}
/*
** Return true if it desirable to avoid allocating a new page cache
** entry.
**
** If memory was allocated specifically to the page cache using
** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
** it is desirable to avoid allocating a new page cache entry because
** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
** for all page cache needs and we should not need to spill the
** allocation onto the heap.
**
** Or, the heap is used for all page cache memory put the heap is
** under memory pressure, then again it is desirable to avoid
** allocating a new page cache entry in order to avoid stressing
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
return pcache1.bUnderPressure;
}else{
return sqlite3HeapNearlyFull();
}
}
/******************************************************************************/
/******** General Implementation Functions ************************************/
/*
** This function is used to resize the hash table used by the cache passed
** as the first argument.
**
** The PCache mutex must be held when this function is called.
*/
static int pcache1ResizeHash(PCache1 *p){
PgHdr1 **apNew;
unsigned int nNew;
unsigned int i;
assert( sqlite3_mutex_held(p->pGroup->mutex) );
nNew = p->nHash*2;
if( nNew<256 ){
nNew = 256;
}
pcache1LeaveMutex(p->pGroup);
if( p->nHash ){ sqlite3BeginBenignMalloc(); }
apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
if( p->nHash ){ sqlite3EndBenignMalloc(); }
pcache1EnterMutex(p->pGroup);
if( apNew ){
memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
for(i=0; i<p->nHash; i++){
PgHdr1 *pPage;
PgHdr1 *pNext = p->apHash[i];
while( (pPage = pNext)!=0 ){
unsigned int h = pPage->iKey % nNew;
pNext = pPage->pNext;
pPage->pNext = apNew[h];
apNew[h] = pPage;
}
}
sqlite3_free(p->apHash);
p->apHash = apNew;
p->nHash = nNew;
}
return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
}
/*
** This function is used internally to remove the page pPage from the
** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
** LRU list, then this function is a no-op.
**
** The PGroup mutex must be held when this function is called.
**
** If pPage is NULL then this routine is a no-op.
*/
static void pcache1PinPage(PgHdr1 *pPage){
PCache1 *pCache;
PGroup *pGroup;
if( pPage==0 ) return;
pCache = pPage->pCache;
pGroup = pCache->pGroup;
assert( sqlite3_mutex_held(pGroup->mutex) );
if( pPage->pLruNext || pPage==pGroup->pLruTail ){
if( pPage->pLruPrev ){
pPage->pLruPrev->pLruNext = pPage->pLruNext;
}
if( pPage->pLruNext ){
pPage->pLruNext->pLruPrev = pPage->pLruPrev;
}
if( pGroup->pLruHead==pPage ){
pGroup->pLruHead = pPage->pLruNext;
}
if( pGroup->pLruTail==pPage ){
pGroup->pLruTail = pPage->pLruPrev;
}
pPage->pLruNext = 0;
pPage->pLruPrev = 0;
pPage->pCache->nRecyclable--;
}
}
/*
** Remove the page supplied as an argument from the hash table
** (PCache1.apHash structure) that it is currently stored in.
**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage){
unsigned int h;
PCache1 *pCache = pPage->pCache;
PgHdr1 **pp;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
h = pPage->iKey % pCache->nHash;
for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
*pp = (*pp)->pNext;
pCache->nPage--;
}
/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PGroup *pGroup){
assert( sqlite3_mutex_held(pGroup->mutex) );
while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
PgHdr1 *p = pGroup->pLruTail;
assert( p->pCache->pGroup==pGroup );
pcache1PinPage(p);
pcache1RemoveFromHash(p);
pcache1FreePage(p);
}
}
/*
** Discard all pages from cache pCache with a page number (key value)
** greater than or equal to iLimit. Any pinned pages that meet this
** criteria are unpinned before they are discarded.
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1TruncateUnsafe(
PCache1 *pCache, /* The cache to truncate */
unsigned int iLimit /* Drop pages with this pgno or larger */
){
TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
unsigned int h;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
for(h=0; h<pCache->nHash; h++){
PgHdr1 **pp = &pCache->apHash[h];
PgHdr1 *pPage;
while( (pPage = *pp)!=0 ){
if( pPage->iKey>=iLimit ){
pCache->nPage--;
*pp = pPage->pNext;
pcache1PinPage(pPage);
pcache1FreePage(pPage);
}else{
pp = &pPage->pNext;
TESTONLY( nPage++; )
}
}
}
assert( pCache->nPage==nPage );
}
/******************************************************************************/
/******** sqlite3_pcache Methods **********************************************/
/*
** Implementation of the sqlite3_pcache.xInit method.
*/
static int pcache1Init(void *NotUsed){
UNUSED_PARAMETER(NotUsed);
assert( pcache1.isInit==0 );
memset(&pcache1, 0, sizeof(pcache1));
if( sqlite3GlobalConfig.bCoreMutex ){
pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
}
pcache1.grp.mxPinned = 10;
pcache1.isInit = 1;
return SQLITE_OK;
}
/*
** Implementation of the sqlite3_pcache.xShutdown method.
** Note that the static mutex allocated in xInit does
** not need to be freed.
*/
static void pcache1Shutdown(void *NotUsed){
UNUSED_PARAMETER(NotUsed);
assert( pcache1.isInit!=0 );
memset(&pcache1, 0, sizeof(pcache1));
}
/*
** Implementation of the sqlite3_pcache.xCreate method.
**
** Allocate a new cache.
*/
static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
PCache1 *pCache; /* The newly created page cache */
PGroup *pGroup; /* The group the new page cache will belong to */
int sz; /* Bytes of memory required to allocate the new cache */
/*
** The seperateCache variable is true if each PCache has its own private
** PGroup. In other words, separateCache is true for mode (1) where no
** mutexing is required.
**
** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
**
** * Always use a unified cache in single-threaded applications
**
** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
** use separate caches (mode-1)
*/
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
const int separateCache = 0;
#else
int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
#endif
sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
pCache = (PCache1 *)sqlite3_malloc(sz);
if( pCache ){
memset(pCache, 0, sz);
if( separateCache ){
pGroup = (PGroup*)&pCache[1];
pGroup->mxPinned = 10;
}else{
pGroup = &pcache1_g.grp;
}
pCache->pGroup = pGroup;
pCache->szPage = szPage;
pCache->bPurgeable = (bPurgeable ? 1 : 0);
if( bPurgeable ){
pCache->nMin = 10;
pcache1EnterMutex(pGroup);
pGroup->nMinPage += pCache->nMin;
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pcache1LeaveMutex(pGroup);
}
}
return (sqlite3_pcache *)pCache;
}
/*
** Implementation of the sqlite3_pcache.xCachesize method.
**
** Configure the cache_size limit for a cache.
*/
static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
PCache1 *pCache = (PCache1 *)p;
if( pCache->bPurgeable ){
PGroup *pGroup = pCache->pGroup;
pcache1EnterMutex(pGroup);
pGroup->nMaxPage += (nMax - pCache->nMax);
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pCache->nMax = nMax;
pCache->mxPinned = nMax*9/10;
pcache1EnforceMaxPage(pGroup);
pcache1LeaveMutex(pGroup);
}
}
/*
** Implementation of the sqlite3_pcache.xPagecount method.
*/
static int pcache1Pagecount(sqlite3_pcache *p){
int n;
PCache1 *pCache = (PCache1*)p;
pcache1EnterMutex(pCache->pGroup);
n = pCache->nPage;
pcache1LeaveMutex(pCache->pGroup);
return n;
}
/*
** Implementation of the sqlite3_pcache.xFetch method.
**
** Fetch a page by key value.
**
** Whether or not a new page may be allocated by this function depends on
** the value of the createFlag argument. 0 means do not allocate a new
** page. 1 means allocate a new page if space is easily available. 2
** means to try really hard to allocate a new page.
**
** For a non-purgeable cache (a cache used as the storage for an in-memory
** database) there is really no difference between createFlag 1 and 2. So
** the calling function (pcache.c) will never have a createFlag of 1 on
** a non-purgable cache.
**
** There are three different approaches to obtaining space for a page,
** depending on the value of parameter createFlag (which may be 0, 1 or 2).
**
** 1. Regardless of the value of createFlag, the cache is searched for a
** copy of the requested page. If one is found, it is returned.
**
** 2. If createFlag==0 and the page is not already in the cache, NULL is
** returned.
**
** 3. If createFlag is 1, and the page is not already in the cache, then
** return NULL (do not allocate a new page) if any of the following
** conditions are true:
**
** (a) the number of pages pinned by the cache is greater than
** PCache1.nMax, or
**
** (b) the number of pages pinned by the cache is greater than
** the sum of nMax for all purgeable caches, less the sum of
** nMin for all other purgeable caches, or
**
** 4. If none of the first three conditions apply and the cache is marked
** as purgeable, and if one of the following is true:
**
** (a) The number of pages allocated for the cache is already
** PCache1.nMax, or
**
** (b) The number of pages allocated for all purgeable caches is
** already equal to or greater than the sum of nMax for all
** purgeable caches,
**
** (c) The system is under memory pressure and wants to avoid
** unnecessary pages cache entry allocations
**
** then attempt to recycle a page from the LRU list. If it is the right
** size, return the recycled buffer. Otherwise, free the buffer and
** proceed to step 5.
**
** 5. Otherwise, allocate and return a new page buffer.
*/
static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
unsigned int nPinned;
PCache1 *pCache = (PCache1 *)p;
PGroup *pGroup;
PgHdr1 *pPage = 0;
assert( pCache->bPurgeable || createFlag!=1 );
assert( pCache->bPurgeable || pCache->nMin==0 );
assert( pCache->bPurgeable==0 || pCache->nMin==10 );
assert( pCache->nMin==0 || pCache->bPurgeable );
pcache1EnterMutex(pGroup = pCache->pGroup);
/* Step 1: Search the hash table for an existing entry. */
if( pCache->nHash>0 ){
unsigned int h = iKey % pCache->nHash;
for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
}
/* Step 2: Abort if no existing page is found and createFlag is 0 */
if( pPage || createFlag==0 ){
pcache1PinPage(pPage);
goto fetch_out;
}
/* The pGroup local variable will normally be initialized by the
** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined,
** then pcache1EnterMutex() is a no-op, so we have to initialize the
** local variable here. Delaying the initialization of pGroup is an
** optimization: The common case is to exit the module before reaching
** this point.
*/
#ifdef SQLITE_MUTEX_OMIT
pGroup = pCache->pGroup;
#endif
/* Step 3: Abort if createFlag is 1 but the cache is nearly full */
nPinned = pCache->nPage - pCache->nRecyclable;
assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
assert( pCache->mxPinned == pCache->nMax*9/10 );
if( createFlag==1 && (
nPinned>=pGroup->mxPinned
|| nPinned>=pCache->mxPinned
|| pcache1UnderMemoryPressure(pCache)
)){
goto fetch_out;
}
if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
goto fetch_out;
}
/* Step 4. Try to recycle a page. */
if( pCache->bPurgeable && pGroup->pLruTail && (
(pCache->nPage+1>=pCache->nMax)
|| pGroup->nCurrentPage>=pGroup->nMaxPage
|| pcache1UnderMemoryPressure(pCache)
)){
PCache1 *pOtherCache;
pPage = pGroup->pLruTail;
pcache1RemoveFromHash(pPage);
pcache1PinPage(pPage);
if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){
pcache1FreePage(pPage);
pPage = 0;
}else{
pGroup->nCurrentPage -=
(pOtherCache->bPurgeable - pCache->bPurgeable);
}
}
/* Step 5. If a usable page buffer has still not been found,
** attempt to allocate a new one.
*/
if( !pPage ){
if( createFlag==1 ) sqlite3BeginBenignMalloc();
pcache1LeaveMutex(pGroup);
pPage = pcache1AllocPage(pCache);
pcache1EnterMutex(pGroup);
if( createFlag==1 ) sqlite3EndBenignMalloc();
}
if( pPage ){
unsigned int h = iKey % pCache->nHash;
pCache->nPage++;
pPage->iKey = iKey;
pPage->pNext = pCache->apHash[h];
pPage->pCache = pCache;
pPage->pLruPrev = 0;
pPage->pLruNext = 0;
*(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
pCache->apHash[h] = pPage;
}
fetch_out:
if( pPage && iKey>pCache->iMaxKey ){
pCache->iMaxKey = iKey;
}
pcache1LeaveMutex(pGroup);
return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
}
/*
** Implementation of the sqlite3_pcache.xUnpin method.
**
** Mark a page as unpinned (eligible for asynchronous recycling).
*/
static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
PGroup *pGroup = pCache->pGroup;
assert( pPage->pCache==pCache );
pcache1EnterMutex(pGroup);
/* It is an error to call this function if the page is already
** part of the PGroup LRU list.
*/
assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
pcache1RemoveFromHash(pPage);
pcache1FreePage(pPage);
}else{
/* Add the page to the PGroup LRU list. */
if( pGroup->pLruHead ){
pGroup->pLruHead->pLruPrev = pPage;
pPage->pLruNext = pGroup->pLruHead;
pGroup->pLruHead = pPage;
}else{
pGroup->pLruTail = pPage;
pGroup->pLruHead = pPage;
}
pCache->nRecyclable++;
}
pcache1LeaveMutex(pCache->pGroup);
}
/*
** Implementation of the sqlite3_pcache.xRekey method.
*/
static void pcache1Rekey(
sqlite3_pcache *p,
void *pPg,
unsigned int iOld,
unsigned int iNew
){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
PgHdr1 **pp;
unsigned int h;
assert( pPage->iKey==iOld );
assert( pPage->pCache==pCache );
pcache1EnterMutex(pCache->pGroup);
h = iOld%pCache->nHash;
pp = &pCache->apHash[h];
while( (*pp)!=pPage ){
pp = &(*pp)->pNext;
}
*pp = pPage->pNext;
h = iNew%pCache->nHash;
pPage->iKey = iNew;
pPage->pNext = pCache->apHash[h];
pCache->apHash[h] = pPage;
if( iNew>pCache->iMaxKey ){
pCache->iMaxKey = iNew;
}
pcache1LeaveMutex(pCache->pGroup);
}
/*
** Implementation of the sqlite3_pcache.xTruncate method.
**
** Discard all unpinned pages in the cache with a page number equal to
** or greater than parameter iLimit. Any pinned pages with a page number
** equal to or greater than iLimit are implicitly unpinned.
*/
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
PCache1 *pCache = (PCache1 *)p;
pcache1EnterMutex(pCache->pGroup);
if( iLimit<=pCache->iMaxKey ){
pcache1TruncateUnsafe(pCache, iLimit);
pCache->iMaxKey = iLimit-1;
}
pcache1LeaveMutex(pCache->pGroup);
}
/*
** Implementation of the sqlite3_pcache.xDestroy method.
**
** Destroy a cache allocated using pcache1Create().
*/
static void pcache1Destroy(sqlite3_pcache *p){
PCache1 *pCache = (PCache1 *)p;
PGroup *pGroup = pCache->pGroup;
assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
pcache1EnterMutex(pGroup);
pcache1TruncateUnsafe(pCache, 0);
pGroup->nMaxPage -= pCache->nMax;
pGroup->nMinPage -= pCache->nMin;
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pcache1EnforceMaxPage(pGroup);
pcache1LeaveMutex(pGroup);
sqlite3_free(pCache->apHash);
sqlite3_free(pCache);
}
/*
** This function is called during initialization (sqlite3_initialize()) to
** install the default pluggable cache module, assuming the user has not
** already provided an alternative.
*/
void sqlite3PCacheSetDefault(void){
static const sqlite3_pcache_methods defaultMethods = {
0, /* pArg */
pcache1Init, /* xInit */
pcache1Shutdown, /* xShutdown */
pcache1Create, /* xCreate */
pcache1Cachesize, /* xCachesize */
pcache1Pagecount, /* xPagecount */
pcache1Fetch, /* xFetch */
pcache1Unpin, /* xUnpin */
pcache1Rekey, /* xRekey */
pcache1Truncate, /* xTruncate */
pcache1Destroy /* xDestroy */
};
sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
** been released, the function returns. The return value is the total number
** of bytes of memory released.
*/
int sqlite3PcacheReleaseMemory(int nReq){
int nFree = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
assert( sqlite3_mutex_notheld(pcache1.mutex) );
if( pcache1.pStart==0 ){
PgHdr1 *p;
pcache1EnterMutex(&pcache1.grp);
while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
pcache1PinPage(p);
pcache1RemoveFromHash(p);
pcache1FreePage(p);
}
pcache1LeaveMutex(&pcache1.grp);
}
return nFree;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
#ifdef SQLITE_TEST
/*
** This function is used by test procedures to inspect the internal state
** of the global cache.
*/
void sqlite3PcacheStats(
int *pnCurrent, /* OUT: Total number of pages cached */
int *pnMax, /* OUT: Global maximum cache size */
int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
int *pnRecyclable /* OUT: Total number of pages available for recycling */
){
PgHdr1 *p;
int nRecyclable = 0;
for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
nRecyclable++;
}
*pnCurrent = pcache1.grp.nCurrentPage;
*pnMax = pcache1.grp.nMaxPage;
*pnMin = pcache1.grp.nMinPage;
*pnRecyclable = nRecyclable;
}
#endif