forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmmc_scaled_concat_diag.py
293 lines (243 loc) · 10 KB
/
hmmc_scaled_concat_diag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# https://deeplearningcourses.com/c/unsupervised-machine-learning-hidden-markov-models-in-python
# https://udemy.com/unsupervised-machine-learning-hidden-markov-models-in-python
# https://lazyprogrammer.me
# Continuous-observation HMM with scaling and multiple observations (treated as concatenated sequence)
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import wave
import numpy as np
import matplotlib.pyplot as plt
from generate_c import get_signals, big_init, simple_init
from scipy.stats import multivariate_normal as mvn
def random_normalized(d1, d2):
x = np.random.random((d1, d2))
return x / x.sum(axis=1, keepdims=True)
class HMM:
def __init__(self, M, K):
self.M = M # number of hidden states
self.K = K # number of Gaussians
def fit(self, X, max_iter=25, eps=1e-1):
# train the HMM model using the Baum-Welch algorithm
# a specific instance of the expectation-maximization algorithm
# concatenate sequences in X and determine start/end positions
sequenceLengths = []
for x in X:
sequenceLengths.append(len(x))
Xc = np.concatenate(X)
T = len(Xc)
startPositions = np.zeros(len(Xc), dtype=np.bool)
endPositions = np.zeros(len(Xc), dtype=np.bool)
startPositionValues = []
last = 0
for length in sequenceLengths:
startPositionValues.append(last)
startPositions[last] = 1
if last > 0:
endPositions[last - 1] = 1
last += length
D = X[0].shape[1] # assume each x is organized (T, D)
# randomly initialize all parameters
self.pi = np.ones(self.M) / self.M # initial state distribution
self.A = random_normalized(self.M, self.M) # state transition matrix
self.R = np.ones((self.M, self.K)) / self.K # mixture proportions
self.mu = np.zeros((self.M, self.K, D))
for i in range(self.M):
for k in range(self.K):
random_idx = np.random.choice(T)
self.mu[i,k] = Xc[random_idx]
self.sigma = np.ones((self.M, self.K, D))
# main EM loop
costs = []
for it in range(max_iter):
if it % 1 == 0:
print("it:", it)
scale = np.zeros(T)
# calculate B so we can lookup when updating alpha and beta
B = np.zeros((self.M, T))
component = np.zeros((self.M, self.K, T)) # we'll need these later
for j in range(self.M):
for k in range(self.K):
p = self.R[j,k] * mvn.pdf(Xc, self.mu[j,k], self.sigma[j,k])
component[j,k,:] = p
B[j,:] += p
alpha = np.zeros((T, self.M))
alpha[0] = self.pi*B[:,0]
scale[0] = alpha[0].sum()
alpha[0] /= scale[0]
for t in range(1, T):
if startPositions[t] == 0:
alpha_t_prime = alpha[t-1].dot(self.A) * B[:,t]
else:
alpha_t_prime = self.pi * B[:,t]
scale[t] = alpha_t_prime.sum()
alpha[t] = alpha_t_prime / scale[t]
logP = np.log(scale).sum()
beta = np.zeros((T, self.M))
beta[-1] = 1
for t in range(T - 2, -1, -1):
if startPositions[t + 1] == 1:
beta[t] = 1
else:
beta[t] = self.A.dot(B[:,t+1] * beta[t+1]) / scale[t+1]
# update for Gaussians
gamma = np.zeros((T, self.M, self.K))
for t in range(T):
alphabeta = alpha[t,:].dot(beta[t,:])
for j in range(self.M):
factor = alpha[t,j] * beta[t,j] / alphabeta
for k in range(self.K):
gamma[t,j,k] = factor * component[j,k,t] / B[j,t]
costs.append(logP)
# now re-estimate pi, A, R, mu, sigma
self.pi = np.sum((alpha[t] * beta[t]) for t in startPositionValues) / len(startPositionValues)
a_den = np.zeros((self.M, 1)) # prob don't need this
a_num = np.zeros((self.M, self.M))
r_num = np.zeros((self.M, self.K))
r_den = np.zeros(self.M)
mu_num = np.zeros((self.M, self.K, D))
sigma_num = np.zeros((self.M, self.K, D))
nonEndPositions = (1 - endPositions).astype(np.bool)
a_den += (alpha[nonEndPositions] * beta[nonEndPositions]).sum(axis=0, keepdims=True).T
# numerator for A
for i in range(self.M):
for j in range(self.M):
for t in range(T-1):
if endPositions[t] != 1:
a_num[i,j] += alpha[t,i] * beta[t+1,j] * self.A[i,j] * B[j,t+1] / scale[t+1]
self.A = a_num / a_den
# update mixture components
r_num_n = np.zeros((self.M, self.K))
r_den_n = np.zeros(self.M)
for j in range(self.M):
for k in range(self.K):
for t in range(T):
r_num_n[j,k] += gamma[t,j,k]
r_den_n[j] += gamma[t,j,k]
r_num = r_num_n
r_den = r_den_n
mu_num_n = np.zeros((self.M, self.K, D))
sigma_num_n = np.zeros((self.M, self.K, D))
for j in range(self.M):
for k in range(self.K):
for t in range(T):
# update means
mu_num_n[j,k] += gamma[t,j,k] * Xc[t]
# update covariances
sigma_num_n[j,k] += gamma[t,j,k] * (Xc[t] - self.mu[j,k])**2
mu_num = mu_num_n
sigma_num = sigma_num_n
# update R, mu, sigma
for j in range(self.M):
for k in range(self.K):
self.R[j,k] = r_num[j,k] / r_den[j]
self.mu[j,k] = mu_num[j,k] / r_num[j,k]
self.sigma[j,k] = sigma_num[j,k] / r_num[j,k] + np.ones(D)*eps
assert(np.all(self.R <= 1))
assert(np.all(self.A <= 1))
print("A:", self.A)
print("mu:", self.mu)
print("sigma:", self.sigma)
print("R:", self.R)
print("pi:", self.pi)
plt.plot(costs)
plt.show()
def log_likelihood(self, x):
# returns log P(x | model)
# using the forward part of the forward-backward algorithm
T = len(x)
scale = np.zeros(T)
B = np.zeros((self.M, T))
for j in range(self.M):
for k in range(self.K):
p = self.R[j,k] * mvn.pdf(x, self.mu[j,k], self.sigma[j,k])
B[j,:] += p
alpha = np.zeros((T, self.M))
alpha[0] = self.pi*B[:,0]
scale[0] = alpha[0].sum()
alpha[0] /= scale[0]
for t in range(1, T):
alpha_t_prime = alpha[t-1].dot(self.A) * B[:,t]
scale[t] = alpha_t_prime.sum()
alpha[t] = alpha_t_prime / scale[t]
return np.log(scale).sum()
def get_state_sequence(self, x):
# returns the most likely state sequence given observed sequence x
# using the Viterbi algorithm
T = len(x)
# make the emission matrix B
logB = np.zeros((self.M, T))
for j in range(self.M):
for t in range(T):
for k in range(self.K):
p = np.log(self.R[j,k]) + mvn.logpdf(x[t], self.mu[j,k], self.sigma[j,k])
logB[j,t] += p
print("logB:", logB)
# perform Viterbi as usual
delta = np.zeros((T, self.M))
psi = np.zeros((T, self.M))
# smooth pi in case it is 0
pi = self.pi + 1e-10
pi /= pi.sum()
delta[0] = np.log(pi) + logB[:,0]
for t in range(1, T):
for j in range(self.M):
next_delta = delta[t-1] + np.log(self.A[:,j])
delta[t,j] = np.max(next_delta) + logB[j,t]
psi[t,j] = np.argmax(next_delta)
# backtrack
states = np.zeros(T, dtype=np.int32)
states[T-1] = np.argmax(delta[T-1])
for t in range(T-2, -1, -1):
states[t] = psi[t+1, states[t+1]]
return states
def log_likelihood_multi(self, X):
return np.array([self.log_likelihood(x) for x in X])
def set(self, pi, A, R, mu, sigma):
self.pi = pi
self.A = A
self.R = R
self.mu = mu
self.sigma = sigma
M, K = R.shape
self.M = M
self.K = K
def real_signal():
spf = wave.open('helloworld.wav', 'r')
#Extract Raw Audio from Wav File
# If you right-click on the file and go to "Get Info", you can see:
# sampling rate = 16000 Hz
# bits per sample = 16
# The first is quantization in time
# The second is quantization in amplitude
# We also do this for images!
# 2^16 = 65536 is how many different sound levels we have
signal = spf.readframes(-1)
signal = np.fromstring(signal, 'Int16')
T = len(signal)
signal = (signal - signal.mean()) / signal.std()
hmm = HMM(5, 3)
hmm.fit(signal.reshape(1, T, 1), max_iter=35)
print("LL for fitted params:", hmm.log_likelihood(signal.reshape(T, 1)))
def fake_signal(init=big_init):
signals = get_signals(init=init)
# for signal in signals:
# for d in xrange(signal.shape[1]):
# plt.plot(signal[:,d])
# plt.show()
hmm = HMM(5, 3)
hmm.fit(signals)
L = hmm.log_likelihood_multi(signals).sum()
print("LL for fitted params:", L)
# test in actual params
_, _, _, pi, A, R, mu, sigma = init()
hmm.set(pi, A, R, mu, sigma)
L = hmm.log_likelihood_multi(signals).sum()
print("LL for actual params:", L)
# print most likely state sequence
print("Most likely state sequence for initial observation:")
print(hmm.get_state_sequence(signals[0]))
if __name__ == '__main__':
# real_signal()
fake_signal()