forked from backtime92/CRAFT-Reimplementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
624 lines (532 loc) · 25.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import torch
import torch.utils.data as data
import scipy.io as scio
from gaussian import GaussianTransformer
from watershed import watershed
import re
import itertools
from file_utils import *
from mep import mep
import random
from PIL import Image
import torchvision.transforms as transforms
import craft_utils
def random_scale(img, bboxes, min_size):
h, w = img.shape[0:2]
scale = 1.0
if max(h, w) > 1280:
scale = 1280.0 / max(h, w)
random_scale = np.array([1.0, 2.0, 3.0])
scale1 = np.random.choice(random_scale)
if min(h, w) * scale * scale1 <= min_size:
scale = (min_size + 10) * 1.0 / min(h, w)
else:
scale = scale * scale1
bboxes *= scale
img = cv2.resize(img, dsize=None, fx=scale, fy=scale)
return img
def padding_image(image,imgsize):
length = max(image.shape[0:2])
if len(image.shape) == 3:
img = np.zeros((imgsize, imgsize, len(image.shape)), dtype = np.uint8)
else:
img = np.zeros((imgsize, imgsize), dtype = np.uint8)
scale = imgsize / length
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
if len(image.shape) == 3:
img[:image.shape[0], :image.shape[1], :] = image
else:
img[:image.shape[0], :image.shape[1]] = image
return img
def random_crop(imgs, img_size, character_bboxes):
h, w = imgs[0].shape[0:2]
th, tw = img_size
crop_h, crop_w = img_size
if w == tw and h == th:
return imgs
word_bboxes = []
if len(character_bboxes) > 0:
for bboxes in character_bboxes:
word_bboxes.append(
[[bboxes[:, :, 0].min(), bboxes[:, :, 1].min()], [bboxes[:, :, 0].max(), bboxes[:, :, 1].max()]])
word_bboxes = np.array(word_bboxes, np.int32)
if random.random() > 0.6 and len(word_bboxes) > 0:
sample_bboxes = word_bboxes[random.randint(0, len(word_bboxes) - 1)]
left = max(sample_bboxes[1, 0] - img_size[0], 0)
top = max(sample_bboxes[1, 1] - img_size[0], 0)
if min(sample_bboxes[0, 1], h - th) < top or min(sample_bboxes[0, 0], w - tw) < left:
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
else:
i = random.randint(top, min(sample_bboxes[0, 1], h - th))
j = random.randint(left, min(sample_bboxes[0, 0], w - tw))
crop_h = sample_bboxes[1, 1] if th < sample_bboxes[1, 1] - i else th
crop_w = sample_bboxes[1, 0] if tw < sample_bboxes[1, 0] - j else tw
else:
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
for idx in range(len(imgs)):
# crop_h = sample_bboxes[1, 1] if th < sample_bboxes[1, 1] else th
# crop_w = sample_bboxes[1, 0] if tw < sample_bboxes[1, 0] else tw
if len(imgs[idx].shape) == 3:
imgs[idx] = imgs[idx][i:i + crop_h, j:j + crop_w, :]
else:
imgs[idx] = imgs[idx][i:i + crop_h, j:j + crop_w]
if crop_w > tw or crop_h > th:
imgs[idx] = padding_image(imgs[idx], tw)
return imgs
def random_horizontal_flip(imgs):
if random.random() < 0.5:
for i in range(len(imgs)):
imgs[i] = np.flip(imgs[i], axis=1).copy()
return imgs
def random_rotate(imgs):
max_angle = 10
angle = random.random() * 2 * max_angle - max_angle
for i in range(len(imgs)):
img = imgs[i]
w, h = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (h, w))
imgs[i] = img_rotation
return imgs
class craft_base_dataset(data.Dataset):
def __init__(self, target_size=768, viz=False, debug=False):
self.target_size = target_size
self.viz = viz
self.debug = debug
self.gaussianTransformer = GaussianTransformer(imgSize=1024, region_threshold=0.3, affinity_threshold=0.2)
def load_image_gt_and_confidencemask(self, index):
'''
根据索引值返回图像、字符框、文字行内容、confidence mask
:param index:
:return:
'''
return None, None, None, None, None
def crop_image_by_bbox(self, image, box):
w = (int)(np.linalg.norm(box[0] - box[1]))
h = (int)(np.linalg.norm(box[0] - box[3]))
width = w
height = h
if h > w * 1.5:
width = h
height = w
M = cv2.getPerspectiveTransform(np.float32(box),
np.float32(np.array([[width, 0], [width, height], [0, height], [0, 0]])))
else:
M = cv2.getPerspectiveTransform(np.float32(box),
np.float32(np.array([[0, 0], [width, 0], [width, height], [0, height]])))
warped = cv2.warpPerspective(image, M, (width, height))
return warped, M
def get_confidence(self, real_len, pursedo_len):
if pursedo_len == 0:
return 0.
return (real_len - min(real_len, abs(real_len - pursedo_len))) / real_len
def inference_pursedo_bboxes(self, net, image, word_bbox, word, viz=False):
word_image, MM = self.crop_image_by_bbox(image, word_bbox)
real_word_without_space = word.replace('\s', '')
real_char_nums = len(real_word_without_space)
input = word_image.copy()
scale = 64.0 / input.shape[0]
input = cv2.resize(input, None, fx=scale, fy=scale)
img_torch = torch.from_numpy(imgproc.normalizeMeanVariance(input, mean=(0.485, 0.456, 0.406),
variance=(0.229, 0.224, 0.225)))
img_torch = img_torch.permute(2, 0, 1).unsqueeze(0)
img_torch = img_torch.type(torch.FloatTensor).cuda()
#net.eval()
scores, _ = net(img_torch)
region_scores = scores[0, :, :, 0].cpu().data.numpy()
region_scores = np.uint8(np.clip(region_scores, 0, 1) * 255)
bgr_region_scores = cv2.resize(region_scores, (input.shape[1], input.shape[0]))
bgr_region_scores = cv2.cvtColor(bgr_region_scores, cv2.COLOR_GRAY2BGR)
pursedo_bboxes = watershed(input, bgr_region_scores, False)
_tmp = []
for i in range(pursedo_bboxes.shape[0]):
if np.mean(pursedo_bboxes[i].ravel()) > 2:
_tmp.append(pursedo_bboxes[i])
else:
print("filter bboxes", pursedo_bboxes[i])
pursedo_bboxes = np.array(_tmp, np.float32)
if pursedo_bboxes.shape[0] > 1:
index = np.argsort(pursedo_bboxes[:, 0, 0])
pursedo_bboxes = pursedo_bboxes[index]
confidence = self.get_confidence(real_char_nums, len(pursedo_bboxes))
bboxes = []
if confidence <= 0.5:
width = input.shape[1]
height = input.shape[0]
width_per_char = width / len(word)
for i, char in enumerate(word):
if char == ' ':
continue
left = i * width_per_char
right = (i + 1) * width_per_char
bbox = np.array([[left, 0], [right, 0], [right, height],
[left, height]])
bboxes.append(bbox)
bboxes = np.array(bboxes, np.float32)
confidence = 0.5
else:
bboxes = pursedo_bboxes
if False:
_tmp_bboxes = np.int32(bboxes.copy())
_tmp_bboxes[:, :, 0] = np.clip(_tmp_bboxes[:, :, 0], 0, input.shape[1])
_tmp_bboxes[:, :, 1] = np.clip(_tmp_bboxes[:, :, 1], 0, input.shape[0])
for bbox in _tmp_bboxes:
cv2.polylines(np.uint8(input), [np.reshape(bbox, (-1, 1, 2))], True, (255, 0, 0))
region_scores_color = cv2.applyColorMap(np.uint8(region_scores), cv2.COLORMAP_JET)
region_scores_color = cv2.resize(region_scores_color, (input.shape[1], input.shape[0]))
target = self.gaussianTransformer.generate_region(region_scores_color.shape, [_tmp_bboxes])
target_color = cv2.applyColorMap(target, cv2.COLORMAP_JET)
viz_image = np.hstack([input[:, :, ::-1], region_scores_color, target_color])
cv2.imshow("crop_image", viz_image)
cv2.waitKey()
bboxes /= scale
try:
for j in range(len(bboxes)):
ones = np.ones((4, 1))
tmp = np.concatenate([bboxes[j], ones], axis=-1)
I = np.matrix(MM).I
ori = np.matmul(I, tmp.transpose(1, 0)).transpose(1, 0)
bboxes[j] = ori[:, :2]
except Exception as e:
print(e)
bboxes[:, :, 1] = np.clip(bboxes[:, :, 1], 0., image.shape[0] - 1)
bboxes[:, :, 0] = np.clip(bboxes[:, :, 0], 0., image.shape[1] - 1)
return bboxes, region_scores, confidence
def resizeGt(self, gtmask):
return cv2.resize(gtmask, (self.target_size // 2, self.target_size // 2))
def get_imagename(self, index):
return None
def saveInput(self, imagename, image, region_scores, affinity_scores, confidence_mask):
boxes, polys = craft_utils.getDetBoxes(region_scores / 255, affinity_scores / 255, 0.7, 0.4, 0.4, False)
boxes = np.array(boxes, np.int32) * 2
if len(boxes) > 0:
np.clip(boxes[:, :, 0], 0, image.shape[1])
np.clip(boxes[:, :, 1], 0, image.shape[0])
for box in boxes:
cv2.polylines(image, [np.reshape(box, (-1, 1, 2))], True, (0, 0, 255))
target_gaussian_heatmap_color = imgproc.cvt2HeatmapImg(region_scores / 255)
target_gaussian_affinity_heatmap_color = imgproc.cvt2HeatmapImg(affinity_scores / 255)
confidence_mask_gray = imgproc.cvt2HeatmapImg(confidence_mask)
gt_scores = np.hstack([target_gaussian_heatmap_color, target_gaussian_affinity_heatmap_color])
confidence_mask_gray = np.hstack([np.zeros_like(confidence_mask_gray), confidence_mask_gray])
output = np.concatenate([gt_scores, confidence_mask_gray],
axis=0)
output = np.hstack([image, output])
outpath = os.path.join(os.path.join(os.path.dirname(__file__) + '/output'), "%s_input.jpg" % imagename)
print(outpath)
if not os.path.exists(os.path.dirname(outpath)):
os.mkdir(os.path.dirname(outpath))
cv2.imwrite(outpath, output)
def saveImage(self, imagename, image, bboxes, affinity_bboxes, region_scores, affinity_scores, confidence_mask):
output_image = np.uint8(image.copy())
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
if len(bboxes) > 0:
affinity_bboxes = np.int32(affinity_bboxes)
for i in range(affinity_bboxes.shape[0]):
cv2.polylines(output_image, [np.reshape(affinity_bboxes[i], (-1, 1, 2))], True, (255, 0, 0))
for i in range(len(bboxes)):
_bboxes = np.int32(bboxes[i])
for j in range(_bboxes.shape[0]):
cv2.polylines(output_image, [np.reshape(_bboxes[j], (-1, 1, 2))], True, (0, 0, 255))
target_gaussian_heatmap_color = imgproc.cvt2HeatmapImg(region_scores / 255)
target_gaussian_affinity_heatmap_color = imgproc.cvt2HeatmapImg(affinity_scores / 255)
heat_map = np.concatenate([target_gaussian_heatmap_color, target_gaussian_affinity_heatmap_color], axis=1)
confidence_mask_gray = imgproc.cvt2HeatmapImg(confidence_mask)
output = np.concatenate([output_image, heat_map, confidence_mask_gray], axis=1)
outpath = os.path.join(os.path.join(os.path.dirname(__file__) + '/output'), imagename)
if not os.path.exists(os.path.dirname(outpath)):
os.mkdir(os.path.dirname(outpath))
cv2.imwrite(outpath, output)
def pull_item(self, index):
# if self.get_imagename(index) == 'img_59.jpg':
# pass
# else:
# return [], [], [], [], np.array([0])
image, character_bboxes, words, confidence_mask, confidences = self.load_image_gt_and_confidencemask(index)
if len(confidences) == 0:
confidences = 1.0
else:
confidences = np.array(confidences).mean()
region_scores = np.zeros((image.shape[0], image.shape[1]), dtype=np.float32)
affinity_scores = np.zeros((image.shape[0], image.shape[1]), dtype=np.float32)
affinity_bboxes = []
if len(character_bboxes) > 0:
region_scores = self.gaussianTransformer.generate_region(region_scores.shape, character_bboxes)
affinity_scores, affinity_bboxes = self.gaussianTransformer.generate_affinity(region_scores.shape,
character_bboxes,
words)
if self.viz:
self.saveImage(self.get_imagename(index), image.copy(), character_bboxes, affinity_bboxes, region_scores,
affinity_scores,
confidence_mask)
random_transforms = [image, region_scores, affinity_scores, confidence_mask]
random_transforms = random_crop(random_transforms, (self.target_size, self.target_size), character_bboxes)
random_transforms = random_horizontal_flip(random_transforms)
random_transforms = random_rotate(random_transforms)
cvimage, region_scores, affinity_scores, confidence_mask = random_transforms
region_scores = self.resizeGt(region_scores)
affinity_scores = self.resizeGt(affinity_scores)
confidence_mask = self.resizeGt(confidence_mask)
if self.viz:
self.saveInput(self.get_imagename(index), cvimage, region_scores, affinity_scores, confidence_mask)
image = Image.fromarray(cvimage)
image = image.convert('RGB')
image = transforms.ColorJitter(brightness=32.0 / 255, saturation=0.5)(image)
image = imgproc.normalizeMeanVariance(np.array(image), mean=(0.485, 0.456, 0.406),
variance=(0.229, 0.224, 0.225))
image = torch.from_numpy(image).float().permute(2, 0, 1)
region_scores_torch = torch.from_numpy(region_scores / 255).float()
affinity_scores_torch = torch.from_numpy(affinity_scores / 255).float()
confidence_mask_torch = torch.from_numpy(confidence_mask).float()
return image, region_scores_torch, affinity_scores_torch, confidence_mask_torch, confidences
class Synth80k(craft_base_dataset):
def __init__(self, synthtext_folder, target_size=768, viz=False, debug=False):
super(Synth80k, self).__init__(target_size, viz, debug)
self.synthtext_folder = synthtext_folder
gt = scio.loadmat(os.path.join(synthtext_folder, 'gt.mat'))
self.charbox = gt['charBB'][0]
self.image = gt['imnames'][0]
self.imgtxt = gt['txt'][0]
def __getitem__(self, index):
return self.pull_item(index)
def __len__(self):
return len(self.imgtxt)
def get_imagename(self, index):
return self.image[index][0]
def load_image_gt_and_confidencemask(self, index):
'''
根据索引加载ground truth
:param index:索引
:return:bboxes 字符的框,
'''
img_path = os.path.join(self.synthtext_folder, self.image[index][0])
image = cv2.imread(img_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
_charbox = self.charbox[index].transpose((2, 1, 0))
image = random_scale(image, _charbox, self.target_size)
words = [re.split(' \n|\n |\n| ', t.strip()) for t in self.imgtxt[index]]
words = list(itertools.chain(*words))
words = [t for t in words if len(t) > 0]
character_bboxes = []
total = 0
confidences = []
for i in range(len(words)):
bboxes = _charbox[total:total + len(words[i])]
assert (len(bboxes) == len(words[i]))
total += len(words[i])
bboxes = np.array(bboxes)
character_bboxes.append(bboxes)
confidences.append(1.0)
return image, character_bboxes, words, np.ones((image.shape[0], image.shape[1]), np.float32), confidences
class ICDAR2013(craft_base_dataset):
def __init__(self, net, icdar2013_folder, target_size=768, viz=False, debug=False):
super(ICDAR2013, self).__init__(target_size, viz, debug)
self.net = net
self.net.eval()
self.img_folder = os.path.join(icdar2013_folder, 'images/ch8_training_images')
self.gt_folder = os.path.join(icdar2013_folder, 'gt')
imagenames = os.listdir(self.img_folder)
self.images_path = []
for imagename in imagenames:
self.images_path.append(imagename)
def __getitem__(self, index):
return self.pull_item(index)
def __len__(self):
return len(self.images_path)
def get_imagename(self, index):
return self.images_path[index]
# def convert2013(self,box):
# str = box[-1][1:-1]
# bboxes = [box[0], box[1], box[2], box[1],
# box[2], box[3], box[0], box[3],
# str]
# return bboxes
def load_image_gt_and_confidencemask(self, index):
'''
根据索引加载ground truth
:param index:索引
:return:bboxes 字符的框,
'''
imagename = self.images_path[index]
gt_path = os.path.join(self.gt_folder, "gt_%s.txt" % os.path.splitext(imagename)[0])
word_bboxes, words = self.load_gt(gt_path)
word_bboxes = np.float32(word_bboxes)
image_path = os.path.join(self.img_folder, imagename)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = random_scale(image, word_bboxes, self.target_size)
confidence_mask = np.ones((image.shape[0], image.shape[1]), np.float32)
character_bboxes = []
new_words = []
confidences = []
if len(word_bboxes) > 0:
for i in range(len(word_bboxes)):
if words[i] == '###' or len(words[i].strip()) == 0:
cv2.fillPoly(confidence_mask, [np.int32(word_bboxes[i])], (0))
for i in range(len(word_bboxes)):
if words[i] == '###' or len(words[i].strip()) == 0:
continue
pursedo_bboxes, bbox_region_scores, confidence = self.inference_pursedo_bboxes(self.net, image,
word_bboxes[i],
words[i],
viz=self.viz)
confidences.append(confidence)
cv2.fillPoly(confidence_mask, [np.int32(word_bboxes[i])], (confidence))
new_words.append(words[i])
character_bboxes.append(pursedo_bboxes)
return image, character_bboxes, new_words, confidence_mask, confidences
def load_gt(self, gt_path):
lines = open(gt_path, encoding='utf-8').readlines()
bboxes = []
words = []
for line in lines:
ori_box = line.strip().encode('utf-8').decode('utf-8-sig').split(',')
box = [int(ori_box[j]) for j in range(8)]
word = ori_box[9:]
word = ','.join(word)
box = np.array(box, np.int32).reshape(4, 2)
if word == '###':
words.append('###')
bboxes.append(box)
continue
if len(word.strip()) == 0:
continue
try:
area, p0, p3, p2, p1, _, _ = mep(box)
except Exception as e:
print(e,gt_path)
bbox = np.array([p0, p1, p2, p3])
distance = 10000000
index = 0
for i in range(4):
d = np.linalg.norm(box[0] - bbox[i])
if distance > d:
index = i
distance = d
new_box = []
for i in range(index, index + 4):
new_box.append(bbox[i % 4])
new_box = np.array(new_box)
bboxes.append(np.array(new_box))
words.append(word)
return bboxes, words
class ICDAR2015(craft_base_dataset):
def __init__(self, net, icdar2015_folder, target_size=768, viz=False, debug=False):
super(ICDAR2015, self).__init__(target_size, viz, debug)
self.net = net
self.net.eval()
self.img_folder = os.path.join(icdar2015_folder, 'ch4_training_images')
self.gt_folder = os.path.join(icdar2015_folder, 'ch4_training_localization_transcription_gt')
imagenames = os.listdir(self.img_folder)
self.images_path = []
for imagename in imagenames:
self.images_path.append(imagename)
def __getitem__(self, index):
return self.pull_item(index)
def __len__(self):
return len(self.images_path)
def get_imagename(self, index):
return self.images_path[index]
def load_image_gt_and_confidencemask(self, index):
'''
根据索引加载ground truth
:param index:索引
:return:bboxes 字符的框,
'''
imagename = self.images_path[index]
gt_path = os.path.join(self.gt_folder, "gt_%s.txt" % os.path.splitext(imagename)[0])
word_bboxes, words = self.load_gt(gt_path)
word_bboxes = np.float32(word_bboxes)
image_path = os.path.join(self.img_folder, imagename)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = random_scale(image, word_bboxes, self.target_size)
confidence_mask = np.ones((image.shape[0], image.shape[1]), np.float32)
character_bboxes = []
new_words = []
confidences = []
if len(word_bboxes) > 0:
for i in range(len(word_bboxes)):
if words[i] == '###' or len(words[i].strip()) == 0:
cv2.fillPoly(confidence_mask, [np.int32(word_bboxes[i])], (0))
for i in range(len(word_bboxes)):
if words[i] == '###' or len(words[i].strip()) == 0:
continue
pursedo_bboxes, bbox_region_scores, confidence = self.inference_pursedo_bboxes(self.net, image,
word_bboxes[i],
words[i],
viz=self.viz)
confidences.append(confidence)
cv2.fillPoly(confidence_mask, [np.int32(word_bboxes[i])], (confidence))
new_words.append(words[i])
character_bboxes.append(pursedo_bboxes)
return image, character_bboxes, new_words, confidence_mask, confidences
def load_gt(self, gt_path):
lines = open(gt_path, encoding='utf-8').readlines()
bboxes = []
words = []
for line in lines:
ori_box = line.strip().encode('utf-8').decode('utf-8-sig').split(',')
box = [int(ori_box[j]) for j in range(8)]
word = ori_box[8:]
word = ','.join(word)
box = np.array(box, np.int32).reshape(4, 2)
if word == '###':
words.append('###')
bboxes.append(box)
continue
if len(word.strip()) == 0:
continue
area, p0, p3, p2, p1, _, _ = mep(box)
bbox = np.array([p0, p1, p2, p3])
distance = 10000000
index = 0
for i in range(4):
d = np.linalg.norm(box[0] - bbox[i])
if distance > d:
index = i
distance = d
new_box = []
for i in range(index, index + 4):
new_box.append(bbox[i % 4])
new_box = np.array(new_box)
bboxes.append(np.array(new_box))
words.append(word)
return bboxes, words
if __name__ == '__main__':
# synthtextloader = Synth80k('/home/jiachx/publicdatasets/SynthText/SynthText', target_size=768, viz=True, debug=True)
# train_loader = torch.utils.data.DataLoader(
# synthtextloader,
# batch_size=1,
# shuffle=False,
# num_workers=0,
# drop_last=True,
# pin_memory=True)
# train_batch = iter(train_loader)
# image_origin, target_gaussian_heatmap, target_gaussian_affinity_heatmap, mask = next(train_batch)
from craft import CRAFT
from torchutil import copyStateDict
net = CRAFT(freeze=True)
net.load_state_dict(
copyStateDict(torch.load('/ic15_iter_1300.pth')))
net = net.cuda()
net = torch.nn.DataParallel(net)
net.eval()
dataloader = ICDAR2015(net, '/icdar2015/icdar2015train', target_size=640, viz=True)
train_loader = torch.utils.data.DataLoader(
dataloader,
batch_size=1,
shuffle=False,
num_workers=0,
drop_last=True,
pin_memory=True)
total = 0
total_sum = 0
for index, (opimage, region_scores, affinity_scores, confidence_mask, confidences_mean) in enumerate(train_loader):
total += 1
# confidence_mean = confidences_mean.mean()
# total_sum += confidence_mean
# print(index, confidence_mean)
print("mean=", total_sum / total)