forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphy-xgene.c
1735 lines (1564 loc) · 59.8 KB
/
phy-xgene.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* AppliedMicro X-Gene Multi-purpose PHY driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Author: Loc Ho <[email protected]>
* Tuan Phan <[email protected]>
* Suman Tripathi <[email protected]>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
* The first PLL clock macro is used for internal reference clock. The second
* PLL clock macro is used to generate the clock for the PHY. This driver
* configures the first PLL CMU, the second PLL CMU, and programs the PHY to
* operate according to the mode of operation. The first PLL CMU is only
* required if internal clock is enabled.
*
* Logical Layer Out Of HW module units:
*
* -----------------
* | Internal | |------|
* | Ref PLL CMU |----| | ------------- ---------
* ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
* | | | | ---------
* External Clock ------| | -------------
* |------|
*
* The Ref PLL CMU CSR (Configuration System Registers) is accessed
* indirectly from the SDS offset at 0x2000. It is only required for
* internal reference clock.
* The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
* The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
*
* The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
* due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
* it is located outside the PHY IP. This is the case for the PHY located
* at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
* to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
*
* Currently, this driver only supports Gen3 SATA mode with external clock.
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/phy/phy.h>
#include <linux/clk.h>
/* Max 2 lanes per a PHY unit */
#define MAX_LANE 2
/* Register offset inside the PHY */
#define SERDES_PLL_INDIRECT_OFFSET 0x0000
#define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
#define SERDES_INDIRECT_OFFSET 0x0400
#define SERDES_LANE_STRIDE 0x0200
/* Some default Serdes parameters */
#define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
#define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
#define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
#define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
#define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
#define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
#define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
#define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
#define SATA_SPD_SEL_GEN3 0x7
#define SATA_SPD_SEL_GEN2 0x3
#define SATA_SPD_SEL_GEN1 0x1
#define SSC_DISABLE 0
#define SSC_ENABLE 1
#define FBDIV_VAL_50M 0x77
#define REFDIV_VAL_50M 0x1
#define FBDIV_VAL_100M 0x3B
#define REFDIV_VAL_100M 0x0
/* SATA Clock/Reset CSR */
#define SATACLKENREG 0x00000000
#define SATA0_CORE_CLKEN 0x00000002
#define SATA1_CORE_CLKEN 0x00000004
#define SATASRESETREG 0x00000004
#define SATA_MEM_RESET_MASK 0x00000020
#define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
#define SATA_SDS_RESET_MASK 0x00000004
#define SATA_CSR_RESET_MASK 0x00000001
#define SATA_CORE_RESET_MASK 0x00000002
#define SATA_PMCLK_RESET_MASK 0x00000010
#define SATA_PCLK_RESET_MASK 0x00000008
/* SDS CSR used for PHY Indirect access */
#define SATA_ENET_SDS_PCS_CTL0 0x00000000
#define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
#define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
#define SATA_ENET_SDS_CTL0 0x0000000c
#define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
#define SATA_ENET_SDS_CTL1 0x00000010
#define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
#define SATA_ENET_SDS_RST_CTL 0x00000024
#define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
#define CFG_IND_WR_CMD_MASK 0x00000001
#define CFG_IND_RD_CMD_MASK 0x00000002
#define CFG_IND_CMD_DONE_MASK 0x00000004
#define CFG_IND_ADDR_SET(dst, src) \
(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
#define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
#define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
#define SATA_ENET_CLK_MACRO_REG 0x0000004c
#define I_RESET_B_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
#define I_PLL_FBDIV_SET(dst, src) \
(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
#define I_CUSTOMEROV_SET(dst, src) \
(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
#define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
#define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
#define CMU_REG0 0x00000
#define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
#define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
#define CMU_REG0_PDOWN_MASK 0x00004000
#define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
#define CMU_REG1 0x00002
#define CMU_REG1_PLL_CP_SET(dst, src) \
(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
#define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
#define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
#define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG2 0x00004
#define CMU_REG2_PLL_REFDIV_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define CMU_REG2_PLL_LFRES_SET(dst, src) \
(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
#define CMU_REG2_PLL_FBDIV_SET(dst, src) \
(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
#define CMU_REG3 0x00006
#define CMU_REG3_VCOVARSEL_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
#define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define CMU_REG4 0x00008
#define CMU_REG5 0x0000a
#define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
#define CMU_REG5_PLL_LFCAP_SET(dst, src) \
(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
#define CMU_REG5_PLL_RESETB_MASK 0x00000001
#define CMU_REG6 0x0000c
#define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
#define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define CMU_REG7 0x0000e
#define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
#define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
#define CMU_REG8 0x00010
#define CMU_REG9 0x00012
#define CMU_REG9_WORD_LEN_8BIT 0x000
#define CMU_REG9_WORD_LEN_10BIT 0x001
#define CMU_REG9_WORD_LEN_16BIT 0x002
#define CMU_REG9_WORD_LEN_20BIT 0x003
#define CMU_REG9_WORD_LEN_32BIT 0x004
#define CMU_REG9_WORD_LEN_40BIT 0x005
#define CMU_REG9_WORD_LEN_64BIT 0x006
#define CMU_REG9_WORD_LEN_66BIT 0x007
#define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
#define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
#define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define CMU_REG10 0x00014
#define CMU_REG10_VREG_REFSEL_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG11 0x00016
#define CMU_REG12 0x00018
#define CMU_REG12_STATE_DELAY9_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define CMU_REG13 0x0001a
#define CMU_REG14 0x0001c
#define CMU_REG15 0x0001e
#define CMU_REG16 0x00020
#define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
#define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
#define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
#define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define CMU_REG17 0x00022
#define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
#define CMU_REG17_RESERVED_7_SET(dst, src) \
(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
#define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
#define CMU_REG18 0x00024
#define CMU_REG19 0x00026
#define CMU_REG20 0x00028
#define CMU_REG21 0x0002a
#define CMU_REG22 0x0002c
#define CMU_REG23 0x0002e
#define CMU_REG24 0x00030
#define CMU_REG25 0x00032
#define CMU_REG26 0x00034
#define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG27 0x00036
#define CMU_REG28 0x00038
#define CMU_REG29 0x0003a
#define CMU_REG30 0x0003c
#define CMU_REG30_LOCK_COUNT_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define CMU_REG30_PCIE_MODE_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG31 0x0003e
#define CMU_REG32 0x00040
#define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
#define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define CMU_REG32_IREF_ADJ_SET(dst, src) \
(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
#define CMU_REG33 0x00042
#define CMU_REG34 0x00044
#define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
#define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
#define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
#define CMU_REG35 0x00046
#define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
#define CMU_REG36 0x00048
#define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
#define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
#define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define CMU_REG37 0x0004a
#define CMU_REG38 0x0004c
#define CMU_REG39 0x0004e
/* PHY lane CSR accessing from SDS indirectly */
#define RXTX_REG0 0x000
#define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG1 0x002
#define RXTX_REG1_RXACVCM_SET(dst, src) \
(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
#define RXTX_REG1_CTLE_EQ_SET(dst, src) \
(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
#define RXTX_REG1_RXVREG1_SET(dst, src) \
(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
#define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define RXTX_REG2 0x004
#define RXTX_REG2_VTT_ENA_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define RXTX_REG2_VTT_SEL_SET(dst, src) \
(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
#define RXTX_REG4 0x008
#define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
#define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG5 0x00a
#define RXTX_REG5_TX_CN1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG5_TX_CP1_SET(dst, src) \
(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
#define RXTX_REG5_TX_CN2_SET(dst, src) \
(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
#define RXTX_REG6 0x00c
#define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
#define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define RXTX_REG6_TX_IDLE_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG7 0x00e
#define RXTX_REG7_RESETB_RXD_MASK 0x00000100
#define RXTX_REG7_RESETB_RXA_MASK 0x00000080
#define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG8 0x010
#define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
#define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
#define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
#define RXTX_REG8_SD_VREF_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define RXTX_REG8_SD_DISABLE_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG7 0x00e
#define RXTX_REG7_RESETB_RXD_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG7_RESETB_RXA_SET(dst, src) \
(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
#define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
#define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
#define RXTX_REG11 0x016
#define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG12 0x018
#define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
#define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
#define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG13 0x01a
#define RXTX_REG14 0x01c
#define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
#define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG26 0x034
#define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG26_BLWC_ENA_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG21 0x02a
#define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
#define RXTX_REG22 0x02c
#define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
#define RXTX_REG23 0x02e
#define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG24 0x030
#define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG27 0x036
#define RXTX_REG28 0x038
#define RXTX_REG31 0x03e
#define RXTX_REG38 0x04c
#define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
#define RXTX_REG39 0x04e
#define RXTX_REG40 0x050
#define RXTX_REG41 0x052
#define RXTX_REG42 0x054
#define RXTX_REG43 0x056
#define RXTX_REG44 0x058
#define RXTX_REG45 0x05a
#define RXTX_REG46 0x05c
#define RXTX_REG47 0x05e
#define RXTX_REG48 0x060
#define RXTX_REG49 0x062
#define RXTX_REG50 0x064
#define RXTX_REG51 0x066
#define RXTX_REG52 0x068
#define RXTX_REG53 0x06a
#define RXTX_REG54 0x06c
#define RXTX_REG55 0x06e
#define RXTX_REG61 0x07a
#define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
#define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
#define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
#define RXTX_REG62 0x07c
#define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG81 0x0a2
#define RXTX_REG89_MU_TH7_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG89_MU_TH8_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG89_MU_TH9_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG96 0x0c0
#define RXTX_REG96_MU_FREQ1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG96_MU_FREQ2_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG96_MU_FREQ3_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG99 0x0c6
#define RXTX_REG99_MU_PHASE1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG99_MU_PHASE2_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG99_MU_PHASE3_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG102 0x0cc
#define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
#define RXTX_REG114 0x0e4
#define RXTX_REG121 0x0f2
#define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
#define RXTX_REG125 0x0fa
#define RXTX_REG125_PQ_REG_SET(dst, src) \
(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
#define RXTX_REG125_SIGN_PQ_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
#define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
#define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG127 0x0fe
#define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
#define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
#define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG128 0x100
#define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
#define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG129 0x102
#define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG130 0x104
#define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG145 0x122
#define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define RXTX_REG145_RXES_ENA_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG147 0x126
#define RXTX_REG148 0x128
/* Clock macro type */
enum cmu_type_t {
REF_CMU = 0, /* Clock macro is the internal reference clock */
PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
};
enum mux_type_t {
MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
};
enum clk_type_t {
CLK_EXT_DIFF = 0, /* External differential */
CLK_INT_DIFF = 1, /* Internal differential */
CLK_INT_SING = 2, /* Internal single ended */
};
enum xgene_phy_mode {
MODE_SATA = 0, /* List them for simple reference */
MODE_SGMII = 1,
MODE_PCIE = 2,
MODE_USB = 3,
MODE_XFI = 4,
MODE_MAX
};
struct xgene_sata_override_param {
u32 speed[MAX_LANE]; /* Index for override parameter per lane */
u32 txspeed[3]; /* Tx speed */
u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
};
struct xgene_phy_ctx {
struct device *dev;
struct phy *phy;
enum xgene_phy_mode mode; /* Mode of operation */
enum clk_type_t clk_type; /* Input clock selection */
void __iomem *sds_base; /* PHY CSR base addr */
struct clk *clk; /* Optional clock */
/* Override Serdes parameters */
struct xgene_sata_override_param sata_param;
};
/*
* For chip earlier than A3 version, enable this flag.
* To enable, pass boot argument phy_xgene.preA3Chip=1
*/
static int preA3Chip;
MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
module_param_named(preA3Chip, preA3Chip, int, 0444);
static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
u32 indirect_data_reg, u32 addr, u32 data)
{
unsigned long deadline = jiffies + HZ;
u32 val;
u32 cmd;
cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
cmd = CFG_IND_ADDR_SET(cmd, addr);
writel(data, csr_base + indirect_data_reg);
readl(csr_base + indirect_data_reg); /* Force a barrier */
writel(cmd, csr_base + indirect_cmd_reg);
readl(csr_base + indirect_cmd_reg); /* Force a barrier */
do {
val = readl(csr_base + indirect_cmd_reg);
} while (!(val & CFG_IND_CMD_DONE_MASK) &&
time_before(jiffies, deadline));
if (!(val & CFG_IND_CMD_DONE_MASK))
pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
csr_base + indirect_cmd_reg, addr, data);
}
static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
u32 indirect_data_reg, u32 addr, u32 *data)
{
unsigned long deadline = jiffies + HZ;
u32 val;
u32 cmd;
cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
cmd = CFG_IND_ADDR_SET(cmd, addr);
writel(cmd, csr_base + indirect_cmd_reg);
readl(csr_base + indirect_cmd_reg); /* Force a barrier */
do {
val = readl(csr_base + indirect_cmd_reg);
} while (!(val & CFG_IND_CMD_DONE_MASK) &&
time_before(jiffies, deadline));
*data = readl(csr_base + indirect_data_reg);
if (!(val & CFG_IND_CMD_DONE_MASK))
pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
csr_base + indirect_cmd_reg, addr, *data);
}
static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 data)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
if (cmu_type == REF_CMU)
reg += SERDES_PLL_REF_INDIRECT_OFFSET;
else
reg += SERDES_PLL_INDIRECT_OFFSET;
sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_WDATA_REG, reg, data);
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
}
static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 *data)
{
void __iomem *sds_base = ctx->sds_base;
if (cmu_type == REF_CMU)
reg += SERDES_PLL_REF_INDIRECT_OFFSET;
else
reg += SERDES_PLL_INDIRECT_OFFSET;
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, data);
pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
}
static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val |= bits;
cmu_wr(ctx, cmu_type, reg, val);
cmu_rd(ctx, cmu_type, reg, &val);
val &= ~bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val &= ~bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val |= bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
reg += SERDES_INDIRECT_OFFSET;
reg += lane * SERDES_LANE_STRIDE;
sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_WDATA_REG, reg, data);
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
val);
}
static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
{
void __iomem *sds_base = ctx->sds_base;
reg += SERDES_INDIRECT_OFFSET;
reg += lane * SERDES_LANE_STRIDE;
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, data);
pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
}
static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
u32 bits)
{
u32 val;
serdes_rd(ctx, lane, reg, &val);
val &= ~bits;
serdes_wr(ctx, lane, reg, val);
}
static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
u32 bits)
{
u32 val;
serdes_rd(ctx, lane, reg, &val);
val |= bits;
serdes_wr(ctx, lane, reg, val);
}
static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
/* Set the reset sequence delay for TX ready assertion */
cmu_rd(ctx, cmu_type, CMU_REG12, &val);
val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG12, val);
/* Set the programmable stage delays between various enable stages */
cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
/* Configure clock type */
if (clk_type == CLK_EXT_DIFF) {
/* Select external clock mux */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Select CMOS as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev, "Set external reference clock\n");
} else if (clk_type == CLK_INT_DIFF) {
/* Select internal clock mux */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Select CMOS as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev, "Set internal reference clock\n");
} else if (clk_type == CLK_INT_SING) {
/*
* NOTE: This clock type is NOT support for controller
* whose internal clock shared in the PCIe controller
*
* Select internal clock mux
*/
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
/* Select CML as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev,
"Set internal single ended reference clock\n");
}
}
static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
int ref_100MHz;
if (cmu_type == REF_CMU) {
/* Set VCO calibration voltage threshold */
cmu_rd(ctx, cmu_type, CMU_REG34, &val);
val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
cmu_wr(ctx, cmu_type, CMU_REG34, val);
}
/* Set the VCO calibration counter */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
else
val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Configure PLL for calibration */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_PLL_CP_SET(val, 0x1);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
else
val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
if (cmu_type == REF_CMU)
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
else
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
if (cmu_type != REF_CMU)
cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/* Configure the PLL for either 100MHz or 50MHz */
cmu_rd(ctx, cmu_type, CMU_REG2, &val);
if (cmu_type == REF_CMU) {
val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
ref_100MHz = 1;
} else {
val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
if (clk_type == CLK_EXT_DIFF)
ref_100MHz = 0;
else
ref_100MHz = 1;
}
if (ref_100MHz) {
val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
} else {
val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
}
cmu_wr(ctx, cmu_type, CMU_REG2, val);
/* Configure the VCO */
cmu_rd(ctx, cmu_type, CMU_REG3, &val);
if (cmu_type == REF_CMU) {
val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
} else {
val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
if (preA3Chip)
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
else
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
}
cmu_wr(ctx, cmu_type, CMU_REG3, val);
/* Disable force PLL lock */
cmu_rd(ctx, cmu_type, CMU_REG26, &val);
val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG26, val);
/* Setup PLL loop filter */
cmu_rd(ctx, cmu_type, CMU_REG5, &val);
val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
if (cmu_type == REF_CMU || !preA3Chip)
val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
else
val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
cmu_wr(ctx, cmu_type, CMU_REG5, val);
/* Enable or disable manual calibration */
cmu_rd(ctx, cmu_type, CMU_REG6, &val);
val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
cmu_wr(ctx, cmu_type, CMU_REG6, val);
/* Configure lane for 20-bits */
if (cmu_type == PHY_CMU) {
cmu_rd(ctx, cmu_type, CMU_REG9, &val);
val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
CMU_REG9_WORD_LEN_20BIT);
val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
CMU_REG9_WORD_LEN_20BIT);
val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
if (!preA3Chip) {
val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
}
cmu_wr(ctx, cmu_type, CMU_REG9, val);
if (!preA3Chip) {
cmu_rd(ctx, cmu_type, CMU_REG10, &val);
val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG10, val);
}
}
cmu_rd(ctx, cmu_type, CMU_REG16, &val);
val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
else
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG16, val);
/* Configure for SATA */
cmu_rd(ctx, cmu_type, CMU_REG30, &val);
val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
cmu_wr(ctx, cmu_type, CMU_REG30, val);
/* Disable state machine bypass */
cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
cmu_rd(ctx, cmu_type, CMU_REG32, &val);
val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
else
val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG32, val);
/* Set VCO calibration threshold */
if (cmu_type != REF_CMU && preA3Chip)
cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
else
cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
/* Set CTLE Override and override waiting from state machine */
cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
}
static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type)
{
u32 val;
/* Set SSC modulation value */
cmu_rd(ctx, cmu_type, CMU_REG35, &val);
val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
cmu_wr(ctx, cmu_type, CMU_REG35, val);
/* Enable SSC, set vertical step and DSM value */
cmu_rd(ctx, cmu_type, CMU_REG36, &val);
val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
cmu_wr(ctx, cmu_type, CMU_REG36, val);
/* Reset the PLL */
cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/* Force VCO calibration to restart */
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
}
static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
{
u32 val;
u32 reg;
int i;
int lane;
for (lane = 0; lane < MAX_LANE; lane++) {
serdes_wr(ctx, lane, RXTX_REG147, 0x6);
/* Set boost control for quarter, half, and full rate */
serdes_rd(ctx, lane, RXTX_REG0, &val);
val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
serdes_wr(ctx, lane, RXTX_REG0, val);
/* Set boost control value */
serdes_rd(ctx, lane, RXTX_REG1, &val);
val = RXTX_REG1_RXACVCM_SET(val, 0x7);
val = RXTX_REG1_CTLE_EQ_SET(val,
ctx->sata_param.txboostgain[lane * 3 +
ctx->sata_param.speed[lane]]);
serdes_wr(ctx, lane, RXTX_REG1, val);
/* Latch VTT value based on the termination to ground and
enable TX FIFO */
serdes_rd(ctx, lane, RXTX_REG2, &val);
val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG2, val);
/* Configure Tx for 20-bits */
serdes_rd(ctx, lane, RXTX_REG4, &val);
val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
serdes_wr(ctx, lane, RXTX_REG4, val);
if (!preA3Chip) {
serdes_rd(ctx, lane, RXTX_REG1, &val);
val = RXTX_REG1_RXVREG1_SET(val, 0x2);
val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
serdes_wr(ctx, lane, RXTX_REG1, val);
}
/* Set pre-emphasis first 1 and 2, and post-emphasis values */
serdes_rd(ctx, lane, RXTX_REG5, &val);
val = RXTX_REG5_TX_CN1_SET(val,
ctx->sata_param.txprecursor_cn1[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG5_TX_CP1_SET(val,