forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pid_namespace.c
490 lines (410 loc) · 11.8 KB
/
pid_namespace.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
* Pid namespaces
*
* Authors:
* (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc.
* (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM
* Many thanks to Oleg Nesterov for comments and help
*
*/
#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/user_namespace.h>
#include <linux/syscalls.h>
#include <linux/cred.h>
#include <linux/err.h>
#include <linux/acct.h>
#include <linux/slab.h>
#include <linux/proc_ns.h>
#include <linux/reboot.h>
#include <linux/export.h>
#include <linux/sched/task.h>
#include <linux/sched/signal.h>
struct pid_cache {
int nr_ids;
char name[16];
struct kmem_cache *cachep;
struct list_head list;
};
static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;
/*
* creates the kmem cache to allocate pids from.
* @nr_ids: the number of numerical ids this pid will have to carry
*/
static struct kmem_cache *create_pid_cachep(int nr_ids)
{
struct pid_cache *pcache;
struct kmem_cache *cachep;
mutex_lock(&pid_caches_mutex);
list_for_each_entry(pcache, &pid_caches_lh, list)
if (pcache->nr_ids == nr_ids)
goto out;
pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
if (pcache == NULL)
goto err_alloc;
snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
cachep = kmem_cache_create(pcache->name,
sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
0, SLAB_HWCACHE_ALIGN, NULL);
if (cachep == NULL)
goto err_cachep;
pcache->nr_ids = nr_ids;
pcache->cachep = cachep;
list_add(&pcache->list, &pid_caches_lh);
out:
mutex_unlock(&pid_caches_mutex);
return pcache->cachep;
err_cachep:
kfree(pcache);
err_alloc:
mutex_unlock(&pid_caches_mutex);
return NULL;
}
static void proc_cleanup_work(struct work_struct *work)
{
struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
pid_ns_release_proc(ns);
}
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
#define MAX_PID_NS_LEVEL 32
static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
{
return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
}
static void dec_pid_namespaces(struct ucounts *ucounts)
{
dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
}
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
struct pid_namespace *parent_pid_ns)
{
struct pid_namespace *ns;
unsigned int level = parent_pid_ns->level + 1;
struct ucounts *ucounts;
int i;
int err;
err = -ENOSPC;
if (level > MAX_PID_NS_LEVEL)
goto out;
ucounts = inc_pid_namespaces(user_ns);
if (!ucounts)
goto out;
err = -ENOMEM;
ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
if (ns == NULL)
goto out_dec;
ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!ns->pidmap[0].page)
goto out_free;
ns->pid_cachep = create_pid_cachep(level + 1);
if (ns->pid_cachep == NULL)
goto out_free_map;
err = ns_alloc_inum(&ns->ns);
if (err)
goto out_free_map;
ns->ns.ops = &pidns_operations;
kref_init(&ns->kref);
ns->level = level;
ns->parent = get_pid_ns(parent_pid_ns);
ns->user_ns = get_user_ns(user_ns);
ns->ucounts = ucounts;
ns->nr_hashed = PIDNS_HASH_ADDING;
INIT_WORK(&ns->proc_work, proc_cleanup_work);
set_bit(0, ns->pidmap[0].page);
atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
for (i = 1; i < PIDMAP_ENTRIES; i++)
atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
return ns;
out_free_map:
kfree(ns->pidmap[0].page);
out_free:
kmem_cache_free(pid_ns_cachep, ns);
out_dec:
dec_pid_namespaces(ucounts);
out:
return ERR_PTR(err);
}
static void delayed_free_pidns(struct rcu_head *p)
{
struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
dec_pid_namespaces(ns->ucounts);
put_user_ns(ns->user_ns);
kmem_cache_free(pid_ns_cachep, ns);
}
static void destroy_pid_namespace(struct pid_namespace *ns)
{
int i;
ns_free_inum(&ns->ns);
for (i = 0; i < PIDMAP_ENTRIES; i++)
kfree(ns->pidmap[i].page);
call_rcu(&ns->rcu, delayed_free_pidns);
}
struct pid_namespace *copy_pid_ns(unsigned long flags,
struct user_namespace *user_ns, struct pid_namespace *old_ns)
{
if (!(flags & CLONE_NEWPID))
return get_pid_ns(old_ns);
if (task_active_pid_ns(current) != old_ns)
return ERR_PTR(-EINVAL);
return create_pid_namespace(user_ns, old_ns);
}
static void free_pid_ns(struct kref *kref)
{
struct pid_namespace *ns;
ns = container_of(kref, struct pid_namespace, kref);
destroy_pid_namespace(ns);
}
void put_pid_ns(struct pid_namespace *ns)
{
struct pid_namespace *parent;
while (ns != &init_pid_ns) {
parent = ns->parent;
if (!kref_put(&ns->kref, free_pid_ns))
break;
ns = parent;
}
}
EXPORT_SYMBOL_GPL(put_pid_ns);
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
{
int nr;
int rc;
struct task_struct *task, *me = current;
int init_pids = thread_group_leader(me) ? 1 : 2;
/* Don't allow any more processes into the pid namespace */
disable_pid_allocation(pid_ns);
/*
* Ignore SIGCHLD causing any terminated children to autoreap.
* This speeds up the namespace shutdown, plus see the comment
* below.
*/
spin_lock_irq(&me->sighand->siglock);
me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
spin_unlock_irq(&me->sighand->siglock);
/*
* The last thread in the cgroup-init thread group is terminating.
* Find remaining pid_ts in the namespace, signal and wait for them
* to exit.
*
* Note: This signals each threads in the namespace - even those that
* belong to the same thread group, To avoid this, we would have
* to walk the entire tasklist looking a processes in this
* namespace, but that could be unnecessarily expensive if the
* pid namespace has just a few processes. Or we need to
* maintain a tasklist for each pid namespace.
*
*/
read_lock(&tasklist_lock);
nr = next_pidmap(pid_ns, 1);
while (nr > 0) {
rcu_read_lock();
task = pid_task(find_vpid(nr), PIDTYPE_PID);
if (task && !__fatal_signal_pending(task))
send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
rcu_read_unlock();
nr = next_pidmap(pid_ns, nr);
}
read_unlock(&tasklist_lock);
/*
* Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
* sys_wait4() will also block until our children traced from the
* parent namespace are detached and become EXIT_DEAD.
*/
do {
clear_thread_flag(TIF_SIGPENDING);
rc = sys_wait4(-1, NULL, __WALL, NULL);
} while (rc != -ECHILD);
/*
* sys_wait4() above can't reap the EXIT_DEAD children but we do not
* really care, we could reparent them to the global init. We could
* exit and reap ->child_reaper even if it is not the last thread in
* this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
* pid_ns can not go away until proc_kill_sb() drops the reference.
*
* But this ns can also have other tasks injected by setns()+fork().
* Again, ignoring the user visible semantics we do not really need
* to wait until they are all reaped, but they can be reparented to
* us and thus we need to ensure that pid->child_reaper stays valid
* until they all go away. See free_pid()->wake_up_process().
*
* We rely on ignored SIGCHLD, an injected zombie must be autoreaped
* if reparented.
*/
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (pid_ns->nr_hashed == init_pids)
break;
schedule();
}
__set_current_state(TASK_RUNNING);
if (pid_ns->reboot)
current->signal->group_exit_code = pid_ns->reboot;
acct_exit_ns(pid_ns);
return;
}
#ifdef CONFIG_CHECKPOINT_RESTORE
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct pid_namespace *pid_ns = task_active_pid_ns(current);
struct ctl_table tmp = *table;
if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
return -EPERM;
/*
* Writing directly to ns' last_pid field is OK, since this field
* is volatile in a living namespace anyway and a code writing to
* it should synchronize its usage with external means.
*/
tmp.data = &pid_ns->last_pid;
return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
}
extern int pid_max;
static int zero = 0;
static struct ctl_table pid_ns_ctl_table[] = {
{
.procname = "ns_last_pid",
.maxlen = sizeof(int),
.mode = 0666, /* permissions are checked in the handler */
.proc_handler = pid_ns_ctl_handler,
.extra1 = &zero,
.extra2 = &pid_max,
},
{ }
};
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
#endif /* CONFIG_CHECKPOINT_RESTORE */
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
if (pid_ns == &init_pid_ns)
return 0;
switch (cmd) {
case LINUX_REBOOT_CMD_RESTART2:
case LINUX_REBOOT_CMD_RESTART:
pid_ns->reboot = SIGHUP;
break;
case LINUX_REBOOT_CMD_POWER_OFF:
case LINUX_REBOOT_CMD_HALT:
pid_ns->reboot = SIGINT;
break;
default:
return -EINVAL;
}
read_lock(&tasklist_lock);
force_sig(SIGKILL, pid_ns->child_reaper);
read_unlock(&tasklist_lock);
do_exit(0);
/* Not reached */
return 0;
}
static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
{
return container_of(ns, struct pid_namespace, ns);
}
static struct ns_common *pidns_get(struct task_struct *task)
{
struct pid_namespace *ns;
rcu_read_lock();
ns = task_active_pid_ns(task);
if (ns)
get_pid_ns(ns);
rcu_read_unlock();
return ns ? &ns->ns : NULL;
}
static struct ns_common *pidns_for_children_get(struct task_struct *task)
{
struct pid_namespace *ns = NULL;
task_lock(task);
if (task->nsproxy) {
ns = task->nsproxy->pid_ns_for_children;
get_pid_ns(ns);
}
task_unlock(task);
if (ns) {
read_lock(&tasklist_lock);
if (!ns->child_reaper) {
put_pid_ns(ns);
ns = NULL;
}
read_unlock(&tasklist_lock);
}
return ns ? &ns->ns : NULL;
}
static void pidns_put(struct ns_common *ns)
{
put_pid_ns(to_pid_ns(ns));
}
static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
{
struct pid_namespace *active = task_active_pid_ns(current);
struct pid_namespace *ancestor, *new = to_pid_ns(ns);
if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
return -EPERM;
/*
* Only allow entering the current active pid namespace
* or a child of the current active pid namespace.
*
* This is required for fork to return a usable pid value and
* this maintains the property that processes and their
* children can not escape their current pid namespace.
*/
if (new->level < active->level)
return -EINVAL;
ancestor = new;
while (ancestor->level > active->level)
ancestor = ancestor->parent;
if (ancestor != active)
return -EINVAL;
put_pid_ns(nsproxy->pid_ns_for_children);
nsproxy->pid_ns_for_children = get_pid_ns(new);
return 0;
}
static struct ns_common *pidns_get_parent(struct ns_common *ns)
{
struct pid_namespace *active = task_active_pid_ns(current);
struct pid_namespace *pid_ns, *p;
/* See if the parent is in the current namespace */
pid_ns = p = to_pid_ns(ns)->parent;
for (;;) {
if (!p)
return ERR_PTR(-EPERM);
if (p == active)
break;
p = p->parent;
}
return &get_pid_ns(pid_ns)->ns;
}
static struct user_namespace *pidns_owner(struct ns_common *ns)
{
return to_pid_ns(ns)->user_ns;
}
const struct proc_ns_operations pidns_operations = {
.name = "pid",
.type = CLONE_NEWPID,
.get = pidns_get,
.put = pidns_put,
.install = pidns_install,
.owner = pidns_owner,
.get_parent = pidns_get_parent,
};
const struct proc_ns_operations pidns_for_children_operations = {
.name = "pid_for_children",
.real_ns_name = "pid",
.type = CLONE_NEWPID,
.get = pidns_for_children_get,
.put = pidns_put,
.install = pidns_install,
.owner = pidns_owner,
.get_parent = pidns_get_parent,
};
static __init int pid_namespaces_init(void)
{
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
#ifdef CONFIG_CHECKPOINT_RESTORE
register_sysctl_paths(kern_path, pid_ns_ctl_table);
#endif
return 0;
}
__initcall(pid_namespaces_init);