forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassoc_array.c
1734 lines (1527 loc) · 52 KB
/
assoc_array.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Generic associative array implementation.
*
* See Documentation/core-api/assoc_array.rst for information.
*
* Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
* Written by David Howells ([email protected])
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
//#define DEBUG
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/assoc_array_priv.h>
/*
* Iterate over an associative array. The caller must hold the RCU read lock
* or better.
*/
static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
const struct assoc_array_ptr *stop,
int (*iterator)(const void *leaf,
void *iterator_data),
void *iterator_data)
{
const struct assoc_array_shortcut *shortcut;
const struct assoc_array_node *node;
const struct assoc_array_ptr *cursor, *ptr, *parent;
unsigned long has_meta;
int slot, ret;
cursor = root;
begin_node:
if (assoc_array_ptr_is_shortcut(cursor)) {
/* Descend through a shortcut */
shortcut = assoc_array_ptr_to_shortcut(cursor);
smp_read_barrier_depends();
cursor = READ_ONCE(shortcut->next_node);
}
node = assoc_array_ptr_to_node(cursor);
smp_read_barrier_depends();
slot = 0;
/* We perform two passes of each node.
*
* The first pass does all the leaves in this node. This means we
* don't miss any leaves if the node is split up by insertion whilst
* we're iterating over the branches rooted here (we may, however, see
* some leaves twice).
*/
has_meta = 0;
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
ptr = READ_ONCE(node->slots[slot]);
has_meta |= (unsigned long)ptr;
if (ptr && assoc_array_ptr_is_leaf(ptr)) {
/* We need a barrier between the read of the pointer
* and dereferencing the pointer - but only if we are
* actually going to dereference it.
*/
smp_read_barrier_depends();
/* Invoke the callback */
ret = iterator(assoc_array_ptr_to_leaf(ptr),
iterator_data);
if (ret)
return ret;
}
}
/* The second pass attends to all the metadata pointers. If we follow
* one of these we may find that we don't come back here, but rather go
* back to a replacement node with the leaves in a different layout.
*
* We are guaranteed to make progress, however, as the slot number for
* a particular portion of the key space cannot change - and we
* continue at the back pointer + 1.
*/
if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
goto finished_node;
slot = 0;
continue_node:
node = assoc_array_ptr_to_node(cursor);
smp_read_barrier_depends();
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
ptr = READ_ONCE(node->slots[slot]);
if (assoc_array_ptr_is_meta(ptr)) {
cursor = ptr;
goto begin_node;
}
}
finished_node:
/* Move up to the parent (may need to skip back over a shortcut) */
parent = READ_ONCE(node->back_pointer);
slot = node->parent_slot;
if (parent == stop)
return 0;
if (assoc_array_ptr_is_shortcut(parent)) {
shortcut = assoc_array_ptr_to_shortcut(parent);
smp_read_barrier_depends();
cursor = parent;
parent = READ_ONCE(shortcut->back_pointer);
slot = shortcut->parent_slot;
if (parent == stop)
return 0;
}
/* Ascend to next slot in parent node */
cursor = parent;
slot++;
goto continue_node;
}
/**
* assoc_array_iterate - Pass all objects in the array to a callback
* @array: The array to iterate over.
* @iterator: The callback function.
* @iterator_data: Private data for the callback function.
*
* Iterate over all the objects in an associative array. Each one will be
* presented to the iterator function.
*
* If the array is being modified concurrently with the iteration then it is
* possible that some objects in the array will be passed to the iterator
* callback more than once - though every object should be passed at least
* once. If this is undesirable then the caller must lock against modification
* for the duration of this function.
*
* The function will return 0 if no objects were in the array or else it will
* return the result of the last iterator function called. Iteration stops
* immediately if any call to the iteration function results in a non-zero
* return.
*
* The caller should hold the RCU read lock or better if concurrent
* modification is possible.
*/
int assoc_array_iterate(const struct assoc_array *array,
int (*iterator)(const void *object,
void *iterator_data),
void *iterator_data)
{
struct assoc_array_ptr *root = READ_ONCE(array->root);
if (!root)
return 0;
return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
}
enum assoc_array_walk_status {
assoc_array_walk_tree_empty,
assoc_array_walk_found_terminal_node,
assoc_array_walk_found_wrong_shortcut,
};
struct assoc_array_walk_result {
struct {
struct assoc_array_node *node; /* Node in which leaf might be found */
int level;
int slot;
} terminal_node;
struct {
struct assoc_array_shortcut *shortcut;
int level;
int sc_level;
unsigned long sc_segments;
unsigned long dissimilarity;
} wrong_shortcut;
};
/*
* Navigate through the internal tree looking for the closest node to the key.
*/
static enum assoc_array_walk_status
assoc_array_walk(const struct assoc_array *array,
const struct assoc_array_ops *ops,
const void *index_key,
struct assoc_array_walk_result *result)
{
struct assoc_array_shortcut *shortcut;
struct assoc_array_node *node;
struct assoc_array_ptr *cursor, *ptr;
unsigned long sc_segments, dissimilarity;
unsigned long segments;
int level, sc_level, next_sc_level;
int slot;
pr_devel("-->%s()\n", __func__);
cursor = READ_ONCE(array->root);
if (!cursor)
return assoc_array_walk_tree_empty;
level = 0;
/* Use segments from the key for the new leaf to navigate through the
* internal tree, skipping through nodes and shortcuts that are on
* route to the destination. Eventually we'll come to a slot that is
* either empty or contains a leaf at which point we've found a node in
* which the leaf we're looking for might be found or into which it
* should be inserted.
*/
jumped:
segments = ops->get_key_chunk(index_key, level);
pr_devel("segments[%d]: %lx\n", level, segments);
if (assoc_array_ptr_is_shortcut(cursor))
goto follow_shortcut;
consider_node:
node = assoc_array_ptr_to_node(cursor);
smp_read_barrier_depends();
slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
slot &= ASSOC_ARRAY_FAN_MASK;
ptr = READ_ONCE(node->slots[slot]);
pr_devel("consider slot %x [ix=%d type=%lu]\n",
slot, level, (unsigned long)ptr & 3);
if (!assoc_array_ptr_is_meta(ptr)) {
/* The node doesn't have a node/shortcut pointer in the slot
* corresponding to the index key that we have to follow.
*/
result->terminal_node.node = node;
result->terminal_node.level = level;
result->terminal_node.slot = slot;
pr_devel("<--%s() = terminal_node\n", __func__);
return assoc_array_walk_found_terminal_node;
}
if (assoc_array_ptr_is_node(ptr)) {
/* There is a pointer to a node in the slot corresponding to
* this index key segment, so we need to follow it.
*/
cursor = ptr;
level += ASSOC_ARRAY_LEVEL_STEP;
if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
goto consider_node;
goto jumped;
}
/* There is a shortcut in the slot corresponding to the index key
* segment. We follow the shortcut if its partial index key matches
* this leaf's. Otherwise we need to split the shortcut.
*/
cursor = ptr;
follow_shortcut:
shortcut = assoc_array_ptr_to_shortcut(cursor);
smp_read_barrier_depends();
pr_devel("shortcut to %d\n", shortcut->skip_to_level);
sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
BUG_ON(sc_level > shortcut->skip_to_level);
do {
/* Check the leaf against the shortcut's index key a word at a
* time, trimming the final word (the shortcut stores the index
* key completely from the root to the shortcut's target).
*/
if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
segments = ops->get_key_chunk(index_key, sc_level);
sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
dissimilarity = segments ^ sc_segments;
if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
/* Trim segments that are beyond the shortcut */
int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
dissimilarity &= ~(ULONG_MAX << shift);
next_sc_level = shortcut->skip_to_level;
} else {
next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
}
if (dissimilarity != 0) {
/* This shortcut points elsewhere */
result->wrong_shortcut.shortcut = shortcut;
result->wrong_shortcut.level = level;
result->wrong_shortcut.sc_level = sc_level;
result->wrong_shortcut.sc_segments = sc_segments;
result->wrong_shortcut.dissimilarity = dissimilarity;
return assoc_array_walk_found_wrong_shortcut;
}
sc_level = next_sc_level;
} while (sc_level < shortcut->skip_to_level);
/* The shortcut matches the leaf's index to this point. */
cursor = READ_ONCE(shortcut->next_node);
if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
level = sc_level;
goto jumped;
} else {
level = sc_level;
goto consider_node;
}
}
/**
* assoc_array_find - Find an object by index key
* @array: The associative array to search.
* @ops: The operations to use.
* @index_key: The key to the object.
*
* Find an object in an associative array by walking through the internal tree
* to the node that should contain the object and then searching the leaves
* there. NULL is returned if the requested object was not found in the array.
*
* The caller must hold the RCU read lock or better.
*/
void *assoc_array_find(const struct assoc_array *array,
const struct assoc_array_ops *ops,
const void *index_key)
{
struct assoc_array_walk_result result;
const struct assoc_array_node *node;
const struct assoc_array_ptr *ptr;
const void *leaf;
int slot;
if (assoc_array_walk(array, ops, index_key, &result) !=
assoc_array_walk_found_terminal_node)
return NULL;
node = result.terminal_node.node;
smp_read_barrier_depends();
/* If the target key is available to us, it's has to be pointed to by
* the terminal node.
*/
for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
ptr = READ_ONCE(node->slots[slot]);
if (ptr && assoc_array_ptr_is_leaf(ptr)) {
/* We need a barrier between the read of the pointer
* and dereferencing the pointer - but only if we are
* actually going to dereference it.
*/
leaf = assoc_array_ptr_to_leaf(ptr);
smp_read_barrier_depends();
if (ops->compare_object(leaf, index_key))
return (void *)leaf;
}
}
return NULL;
}
/*
* Destructively iterate over an associative array. The caller must prevent
* other simultaneous accesses.
*/
static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
const struct assoc_array_ops *ops)
{
struct assoc_array_shortcut *shortcut;
struct assoc_array_node *node;
struct assoc_array_ptr *cursor, *parent = NULL;
int slot = -1;
pr_devel("-->%s()\n", __func__);
cursor = root;
if (!cursor) {
pr_devel("empty\n");
return;
}
move_to_meta:
if (assoc_array_ptr_is_shortcut(cursor)) {
/* Descend through a shortcut */
pr_devel("[%d] shortcut\n", slot);
BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
shortcut = assoc_array_ptr_to_shortcut(cursor);
BUG_ON(shortcut->back_pointer != parent);
BUG_ON(slot != -1 && shortcut->parent_slot != slot);
parent = cursor;
cursor = shortcut->next_node;
slot = -1;
BUG_ON(!assoc_array_ptr_is_node(cursor));
}
pr_devel("[%d] node\n", slot);
node = assoc_array_ptr_to_node(cursor);
BUG_ON(node->back_pointer != parent);
BUG_ON(slot != -1 && node->parent_slot != slot);
slot = 0;
continue_node:
pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
struct assoc_array_ptr *ptr = node->slots[slot];
if (!ptr)
continue;
if (assoc_array_ptr_is_meta(ptr)) {
parent = cursor;
cursor = ptr;
goto move_to_meta;
}
if (ops) {
pr_devel("[%d] free leaf\n", slot);
ops->free_object(assoc_array_ptr_to_leaf(ptr));
}
}
parent = node->back_pointer;
slot = node->parent_slot;
pr_devel("free node\n");
kfree(node);
if (!parent)
return; /* Done */
/* Move back up to the parent (may need to free a shortcut on
* the way up) */
if (assoc_array_ptr_is_shortcut(parent)) {
shortcut = assoc_array_ptr_to_shortcut(parent);
BUG_ON(shortcut->next_node != cursor);
cursor = parent;
parent = shortcut->back_pointer;
slot = shortcut->parent_slot;
pr_devel("free shortcut\n");
kfree(shortcut);
if (!parent)
return;
BUG_ON(!assoc_array_ptr_is_node(parent));
}
/* Ascend to next slot in parent node */
pr_devel("ascend to %p[%d]\n", parent, slot);
cursor = parent;
node = assoc_array_ptr_to_node(cursor);
slot++;
goto continue_node;
}
/**
* assoc_array_destroy - Destroy an associative array
* @array: The array to destroy.
* @ops: The operations to use.
*
* Discard all metadata and free all objects in an associative array. The
* array will be empty and ready to use again upon completion. This function
* cannot fail.
*
* The caller must prevent all other accesses whilst this takes place as no
* attempt is made to adjust pointers gracefully to permit RCU readlock-holding
* accesses to continue. On the other hand, no memory allocation is required.
*/
void assoc_array_destroy(struct assoc_array *array,
const struct assoc_array_ops *ops)
{
assoc_array_destroy_subtree(array->root, ops);
array->root = NULL;
}
/*
* Handle insertion into an empty tree.
*/
static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
{
struct assoc_array_node *new_n0;
pr_devel("-->%s()\n", __func__);
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
if (!new_n0)
return false;
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
edit->leaf_p = &new_n0->slots[0];
edit->adjust_count_on = new_n0;
edit->set[0].ptr = &edit->array->root;
edit->set[0].to = assoc_array_node_to_ptr(new_n0);
pr_devel("<--%s() = ok [no root]\n", __func__);
return true;
}
/*
* Handle insertion into a terminal node.
*/
static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
const struct assoc_array_ops *ops,
const void *index_key,
struct assoc_array_walk_result *result)
{
struct assoc_array_shortcut *shortcut, *new_s0;
struct assoc_array_node *node, *new_n0, *new_n1, *side;
struct assoc_array_ptr *ptr;
unsigned long dissimilarity, base_seg, blank;
size_t keylen;
bool have_meta;
int level, diff;
int slot, next_slot, free_slot, i, j;
node = result->terminal_node.node;
level = result->terminal_node.level;
edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
pr_devel("-->%s()\n", __func__);
/* We arrived at a node which doesn't have an onward node or shortcut
* pointer that we have to follow. This means that (a) the leaf we
* want must go here (either by insertion or replacement) or (b) we
* need to split this node and insert in one of the fragments.
*/
free_slot = -1;
/* Firstly, we have to check the leaves in this node to see if there's
* a matching one we should replace in place.
*/
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
ptr = node->slots[i];
if (!ptr) {
free_slot = i;
continue;
}
if (assoc_array_ptr_is_leaf(ptr) &&
ops->compare_object(assoc_array_ptr_to_leaf(ptr),
index_key)) {
pr_devel("replace in slot %d\n", i);
edit->leaf_p = &node->slots[i];
edit->dead_leaf = node->slots[i];
pr_devel("<--%s() = ok [replace]\n", __func__);
return true;
}
}
/* If there is a free slot in this node then we can just insert the
* leaf here.
*/
if (free_slot >= 0) {
pr_devel("insert in free slot %d\n", free_slot);
edit->leaf_p = &node->slots[free_slot];
edit->adjust_count_on = node;
pr_devel("<--%s() = ok [insert]\n", __func__);
return true;
}
/* The node has no spare slots - so we're either going to have to split
* it or insert another node before it.
*
* Whatever, we're going to need at least two new nodes - so allocate
* those now. We may also need a new shortcut, but we deal with that
* when we need it.
*/
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
if (!new_n0)
return false;
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
if (!new_n1)
return false;
edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
/* We need to find out how similar the leaves are. */
pr_devel("no spare slots\n");
have_meta = false;
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
ptr = node->slots[i];
if (assoc_array_ptr_is_meta(ptr)) {
edit->segment_cache[i] = 0xff;
have_meta = true;
continue;
}
base_seg = ops->get_object_key_chunk(
assoc_array_ptr_to_leaf(ptr), level);
base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
}
if (have_meta) {
pr_devel("have meta\n");
goto split_node;
}
/* The node contains only leaves */
dissimilarity = 0;
base_seg = edit->segment_cache[0];
for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
dissimilarity |= edit->segment_cache[i] ^ base_seg;
pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
/* The old leaves all cluster in the same slot. We will need
* to insert a shortcut if the new node wants to cluster with them.
*/
if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
goto all_leaves_cluster_together;
/* Otherwise all the old leaves cluster in the same slot, but
* the new leaf wants to go into a different slot - so we
* create a new node (n0) to hold the new leaf and a pointer to
* a new node (n1) holding all the old leaves.
*
* This can be done by falling through to the node splitting
* path.
*/
pr_devel("present leaves cluster but not new leaf\n");
}
split_node:
pr_devel("split node\n");
/* We need to split the current node. The node must contain anything
* from a single leaf (in the one leaf case, this leaf will cluster
* with the new leaf) and the rest meta-pointers, to all leaves, some
* of which may cluster.
*
* It won't contain the case in which all the current leaves plus the
* new leaves want to cluster in the same slot.
*
* We need to expel at least two leaves out of a set consisting of the
* leaves in the node and the new leaf. The current meta pointers can
* just be copied as they shouldn't cluster with any of the leaves.
*
* We need a new node (n0) to replace the current one and a new node to
* take the expelled nodes (n1).
*/
edit->set[0].to = assoc_array_node_to_ptr(new_n0);
new_n0->back_pointer = node->back_pointer;
new_n0->parent_slot = node->parent_slot;
new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
new_n1->parent_slot = -1; /* Need to calculate this */
do_split_node:
pr_devel("do_split_node\n");
new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
new_n1->nr_leaves_on_branch = 0;
/* Begin by finding two matching leaves. There have to be at least two
* that match - even if there are meta pointers - because any leaf that
* would match a slot with a meta pointer in it must be somewhere
* behind that meta pointer and cannot be here. Further, given N
* remaining leaf slots, we now have N+1 leaves to go in them.
*/
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
slot = edit->segment_cache[i];
if (slot != 0xff)
for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
if (edit->segment_cache[j] == slot)
goto found_slot_for_multiple_occupancy;
}
found_slot_for_multiple_occupancy:
pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
new_n1->parent_slot = slot;
/* Metadata pointers cannot change slot */
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
if (assoc_array_ptr_is_meta(node->slots[i]))
new_n0->slots[i] = node->slots[i];
else
new_n0->slots[i] = NULL;
BUG_ON(new_n0->slots[slot] != NULL);
new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
/* Filter the leaf pointers between the new nodes */
free_slot = -1;
next_slot = 0;
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
if (assoc_array_ptr_is_meta(node->slots[i]))
continue;
if (edit->segment_cache[i] == slot) {
new_n1->slots[next_slot++] = node->slots[i];
new_n1->nr_leaves_on_branch++;
} else {
do {
free_slot++;
} while (new_n0->slots[free_slot] != NULL);
new_n0->slots[free_slot] = node->slots[i];
}
}
pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
do {
free_slot++;
} while (new_n0->slots[free_slot] != NULL);
edit->leaf_p = &new_n0->slots[free_slot];
edit->adjust_count_on = new_n0;
} else {
edit->leaf_p = &new_n1->slots[next_slot++];
edit->adjust_count_on = new_n1;
}
BUG_ON(next_slot <= 1);
edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
if (edit->segment_cache[i] == 0xff) {
ptr = node->slots[i];
BUG_ON(assoc_array_ptr_is_leaf(ptr));
if (assoc_array_ptr_is_node(ptr)) {
side = assoc_array_ptr_to_node(ptr);
edit->set_backpointers[i] = &side->back_pointer;
} else {
shortcut = assoc_array_ptr_to_shortcut(ptr);
edit->set_backpointers[i] = &shortcut->back_pointer;
}
}
}
ptr = node->back_pointer;
if (!ptr)
edit->set[0].ptr = &edit->array->root;
else if (assoc_array_ptr_is_node(ptr))
edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
else
edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
edit->excised_meta[0] = assoc_array_node_to_ptr(node);
pr_devel("<--%s() = ok [split node]\n", __func__);
return true;
all_leaves_cluster_together:
/* All the leaves, new and old, want to cluster together in this node
* in the same slot, so we have to replace this node with a shortcut to
* skip over the identical parts of the key and then place a pair of
* nodes, one inside the other, at the end of the shortcut and
* distribute the keys between them.
*
* Firstly we need to work out where the leaves start diverging as a
* bit position into their keys so that we know how big the shortcut
* needs to be.
*
* We only need to make a single pass of N of the N+1 leaves because if
* any keys differ between themselves at bit X then at least one of
* them must also differ with the base key at bit X or before.
*/
pr_devel("all leaves cluster together\n");
diff = INT_MAX;
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
index_key);
if (x < diff) {
BUG_ON(x < 0);
diff = x;
}
}
BUG_ON(diff == INT_MAX);
BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
keylen * sizeof(unsigned long), GFP_KERNEL);
if (!new_s0)
return false;
edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
new_s0->back_pointer = node->back_pointer;
new_s0->parent_slot = node->parent_slot;
new_s0->next_node = assoc_array_node_to_ptr(new_n0);
new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
new_n0->parent_slot = 0;
new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
new_n1->parent_slot = -1; /* Need to calculate this */
new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
BUG_ON(level <= 0);
for (i = 0; i < keylen; i++)
new_s0->index_key[i] =
ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
new_s0->index_key[keylen - 1] &= ~blank;
/* This now reduces to a node splitting exercise for which we'll need
* to regenerate the disparity table.
*/
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
ptr = node->slots[i];
base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
level);
base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
}
base_seg = ops->get_key_chunk(index_key, level);
base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
goto do_split_node;
}
/*
* Handle insertion into the middle of a shortcut.
*/
static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
const struct assoc_array_ops *ops,
struct assoc_array_walk_result *result)
{
struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
struct assoc_array_node *node, *new_n0, *side;
unsigned long sc_segments, dissimilarity, blank;
size_t keylen;
int level, sc_level, diff;
int sc_slot;
shortcut = result->wrong_shortcut.shortcut;
level = result->wrong_shortcut.level;
sc_level = result->wrong_shortcut.sc_level;
sc_segments = result->wrong_shortcut.sc_segments;
dissimilarity = result->wrong_shortcut.dissimilarity;
pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
__func__, level, dissimilarity, sc_level);
/* We need to split a shortcut and insert a node between the two
* pieces. Zero-length pieces will be dispensed with entirely.
*
* First of all, we need to find out in which level the first
* difference was.
*/
diff = __ffs(dissimilarity);
diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
pr_devel("diff=%d\n", diff);
if (!shortcut->back_pointer) {
edit->set[0].ptr = &edit->array->root;
} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
node = assoc_array_ptr_to_node(shortcut->back_pointer);
edit->set[0].ptr = &node->slots[shortcut->parent_slot];
} else {
BUG();
}
edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
/* Create a new node now since we're going to need it anyway */
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
if (!new_n0)
return false;
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
edit->adjust_count_on = new_n0;
/* Insert a new shortcut before the new node if this segment isn't of
* zero length - otherwise we just connect the new node directly to the
* parent.
*/
level += ASSOC_ARRAY_LEVEL_STEP;
if (diff > level) {
pr_devel("pre-shortcut %d...%d\n", level, diff);
keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
keylen * sizeof(unsigned long), GFP_KERNEL);
if (!new_s0)
return false;
edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
new_s0->back_pointer = shortcut->back_pointer;
new_s0->parent_slot = shortcut->parent_slot;
new_s0->next_node = assoc_array_node_to_ptr(new_n0);
new_s0->skip_to_level = diff;
new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
new_n0->parent_slot = 0;
memcpy(new_s0->index_key, shortcut->index_key,
keylen * sizeof(unsigned long));
blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
new_s0->index_key[keylen - 1] &= ~blank;
} else {
pr_devel("no pre-shortcut\n");
edit->set[0].to = assoc_array_node_to_ptr(new_n0);
new_n0->back_pointer = shortcut->back_pointer;
new_n0->parent_slot = shortcut->parent_slot;
}
side = assoc_array_ptr_to_node(shortcut->next_node);
new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
/* We need to know which slot in the new node is going to take a
* metadata pointer.
*/
sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
sc_slot &= ASSOC_ARRAY_FAN_MASK;
pr_devel("new slot %lx >> %d -> %d\n",
sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
/* Determine whether we need to follow the new node with a replacement
* for the current shortcut. We could in theory reuse the current
* shortcut if its parent slot number doesn't change - but that's a
* 1-in-16 chance so not worth expending the code upon.
*/
level = diff + ASSOC_ARRAY_LEVEL_STEP;
if (level < shortcut->skip_to_level) {
pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
keylen * sizeof(unsigned long), GFP_KERNEL);
if (!new_s1)
return false;
edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
new_s1->parent_slot = sc_slot;
new_s1->next_node = shortcut->next_node;
new_s1->skip_to_level = shortcut->skip_to_level;
new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
memcpy(new_s1->index_key, shortcut->index_key,
keylen * sizeof(unsigned long));
edit->set[1].ptr = &side->back_pointer;
edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
} else {
pr_devel("no post-shortcut\n");
/* We don't have to replace the pointed-to node as long as we
* use memory barriers to make sure the parent slot number is
* changed before the back pointer (the parent slot number is
* irrelevant to the old parent shortcut).
*/
new_n0->slots[sc_slot] = shortcut->next_node;
edit->set_parent_slot[0].p = &side->parent_slot;
edit->set_parent_slot[0].to = sc_slot;
edit->set[1].ptr = &side->back_pointer;
edit->set[1].to = assoc_array_node_to_ptr(new_n0);
}
/* Install the new leaf in a spare slot in the new node. */
if (sc_slot == 0)
edit->leaf_p = &new_n0->slots[1];
else
edit->leaf_p = &new_n0->slots[0];
pr_devel("<--%s() = ok [split shortcut]\n", __func__);
return edit;
}
/**
* assoc_array_insert - Script insertion of an object into an associative array
* @array: The array to insert into.
* @ops: The operations to use.
* @index_key: The key to insert at.
* @object: The object to insert.
*
* Precalculate and preallocate a script for the insertion or replacement of an
* object in an associative array. This results in an edit script that can
* either be applied or cancelled.
*
* The function returns a pointer to an edit script or -ENOMEM.
*
* The caller should lock against other modifications and must continue to hold
* the lock until assoc_array_apply_edit() has been called.
*
* Accesses to the tree may take place concurrently with this function,
* provided they hold the RCU read lock.
*/
struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
const struct assoc_array_ops *ops,
const void *index_key,
void *object)
{
struct assoc_array_walk_result result;
struct assoc_array_edit *edit;
pr_devel("-->%s()\n", __func__);
/* The leaf pointer we're given must not have the bottom bit set as we
* use those for type-marking the pointer. NULL pointers are also not
* allowed as they indicate an empty slot but we have to allow them
* here as they can be updated later.
*/
BUG_ON(assoc_array_ptr_is_meta(object));
edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
if (!edit)
return ERR_PTR(-ENOMEM);
edit->array = array;
edit->ops = ops;