forked from codeplaysoftware/syclacademy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solution.cpp
131 lines (101 loc) · 4.37 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
SYCL Academy (c)
SYCL Academy is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-sa/4.0/>.
*/
#include <algorithm>
#include <iostream>
#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>
#if __has_include(<SYCL/sycl.hpp>)
#include <SYCL/sycl.hpp>
#else
#include <CL/sycl.hpp>
#endif
#include <benchmark.h>
#include <image_conv.h>
class image_convolution;
inline constexpr util::filter_type filterType = util::filter_type::blur;
inline constexpr int filterWidth = 11;
inline constexpr int halo = filterWidth / 2;
TEST_CASE("image_convolution_vectorized", "vectors_solution") {
const char* inputImageFile =
"../../Code_Exercises/Images/dogs.png";
const char* outputImageFile =
"../../Code_Exercises/Images/blurred_dogs.png";
auto inputImage = util::read_image(inputImageFile, halo);
auto outputImage = util::allocate_image(
inputImage.width(), inputImage.height(), inputImage.channels());
auto filter = util::generate_filter(util::filter_type::blur, filterWidth);
try {
sycl::queue myQueue{sycl::gpu_selector{},
[](sycl::exception_list exceptionList) {
for (auto e : exceptionList) {
std::rethrow_exception(e);
}
}};
std::cout << "Running on "
<< myQueue.get_device().get_info<sycl::info::device::name>()
<< "\n";
auto inputImgWidth = inputImage.width();
auto inputImgHeight = inputImage.height();
auto channels = inputImage.channels();
auto filterWidth = filter.width();
auto halo = filter.half_width();
auto globalRange = sycl::range(inputImgWidth, inputImgHeight);
auto localRange = sycl::range(32, 1);
auto ndRange = sycl::nd_range(globalRange, localRange);
auto inBufRange = (inputImgWidth + (halo * 2)) * sycl::range(1, channels);
auto outBufRange = inputImgHeight * sycl::range(1, channels);
auto filterRange = filterWidth * sycl::range(1, channels);
{
auto inBuf = sycl::buffer{inputImage.data(), inBufRange};
auto outBuf = sycl::buffer<float, 2>{outBufRange};
auto filterBuf = sycl::buffer{filter.data(), filterRange};
outBuf.set_final_data(outputImage.data());
auto inBufVec = inBuf.reinterpret<sycl::float4>(inBufRange /
sycl::range(1, channels));
auto outBufVec = outBuf.reinterpret<sycl::float4>(
outBufRange / sycl::range(1, channels));
auto filterBufVec = filterBuf.reinterpret<sycl::float4>(
filterRange / sycl::range(1, channels));
util::benchmark(
[&]() {
myQueue.submit([&](sycl::handler& cgh) {
auto inputAcc =
inBufVec.get_access<sycl::access::mode::read>(cgh);
auto outputAcc =
outBufVec.get_access<sycl::access::mode::write>(cgh);
auto filterAcc =
filterBufVec.get_access<sycl::access::mode::read>(cgh);
cgh.parallel_for<image_convolution>(
ndRange, [=](sycl::nd_item<2> item) {
auto globalId = item.get_global_id();
globalId = sycl::id{globalId[1], globalId[0]};
auto haloOffset = sycl::id(halo, halo);
auto src = (globalId + haloOffset);
auto dest = globalId;
auto sum = sycl::float4{0.0f, 0.0f, 0.0f, 0.0f};
for (int r = 0; r < filterWidth; ++r) {
for (int c = 0; c < filterWidth; ++c) {
auto srcOffset = sycl::id(src[0] + (r - halo),
src[1] + ((c - halo)));
auto filterOffset = sycl::id(r, c);
sum += inputAcc[srcOffset] * filterAcc[filterOffset];
}
}
outputAcc[dest] = sum;
});
});
myQueue.wait_and_throw();
},
100, "image convolution (vectorized)");
}
} catch (sycl::exception e) {
std::cout << "Exception caught: " << e.what() << std::endl;
}
util::write_image(outputImage, outputImageFile);
REQUIRE(true);
}