forked from Aircoookie/WLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bus_manager.cpp
641 lines (574 loc) · 20.2 KB
/
bus_manager.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
* Class implementation for addressing various light types
*/
#include <Arduino.h>
#include <IPAddress.h>
#include "const.h"
#include "pin_manager.h"
#include "bus_wrapper.h"
#include "bus_manager.h"
//colors.cpp
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
uint16_t approximateKelvinFromRGB(uint32_t rgb);
void colorRGBtoRGBW(byte* rgb);
//udp.cpp
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
#define DEBUGOUT NetDebug
#else
#define DEBUGOUT Serial
#endif
#ifdef WLED_DEBUG
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#endif
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
#define R(c) (byte((c) >> 16))
#define G(c) (byte((c) >> 8))
#define B(c) (byte(c))
#define W(c) (byte((c) >> 24))
void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
return;
}
if (len == 0) {
return;
}
if (colorOrder > COL_ORDER_MAX) {
return;
}
_mappings[_count].start = start;
_mappings[_count].len = len;
_mappings[_count].colorOrder = colorOrder;
_count++;
}
uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
if (_count == 0) return defaultColorOrder;
// upper nibble contains W swap information
uint8_t swapW = defaultColorOrder >> 4;
for (uint8_t i = 0; i < _count; i++) {
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
return _mappings[i].colorOrder | (swapW << 4);
}
}
return defaultColorOrder;
}
uint32_t Bus::autoWhiteCalc(uint32_t c) {
uint8_t aWM = _autoWhiteMode;
if (_gAWM != AW_GLOBAL_DISABLED) aWM = _gAWM;
if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
uint8_t w = W(c);
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
return RGBW32(r, g, b, w);
}
uint8_t *Bus::allocData(size_t size) {
if (_data) free(_data); // should not happen, but for safety
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
}
BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
, _skip(bc.skipAmount) //sacrificial pixels
, _colorOrder(bc.colorOrder)
, _colorOrderMap(com)
{
if (!IS_DIGITAL(bc.type) || !bc.count) return;
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
_frequencykHz = 0U;
_pins[0] = bc.pins[0];
if (IS_2PIN(bc.type)) {
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
cleanup();
return;
}
_pins[1] = bc.pins[1];
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
}
_iType = PolyBus::getI(bc.type, _pins, nr);
if (_iType == I_NONE) return;
if (bc.doubleBuffer && !allocData(bc.count * (Bus::hasWhite(_type) + 3*Bus::hasRGB(_type)))) return; //warning: hardcoded channel count
_buffering = bc.doubleBuffer;
uint16_t lenToCreate = bc.count;
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr, _frequencykHz);
_valid = (_busPtr != nullptr);
DEBUG_PRINTF("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n", _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], _pins[1], _iType);
}
void BusDigital::show() {
if (!_valid) return;
if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop
size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type);
for (size_t i=0; i<_len; i++) {
size_t offset = i*channels;
uint8_t co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder);
uint32_t c;
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs (_len is always a multiple of 3)
switch (i%3) {
case 0: c = RGBW32(_data[offset] , _data[offset+1], _data[offset+2], 0); break;
case 1: c = RGBW32(_data[offset-1], _data[offset] , _data[offset+1], 0); break;
case 2: c = RGBW32(_data[offset-2], _data[offset-1], _data[offset] , 0); break;
}
} else {
c = RGBW32(_data[offset],_data[offset+1],_data[offset+2],(Bus::hasWhite(_type)?_data[offset+3]:0));
}
uint16_t pix = i;
if (_reversed) pix = _len - pix -1;
pix += _skip;
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co);
}
#if !defined(STATUSLED) || STATUSLED>=0
if (_skip) PolyBus::setPixelColor(_busPtr, _iType, 0, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
#endif
for (int i=1; i<_skip; i++) PolyBus::setPixelColor(_busPtr, _iType, i, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
}
PolyBus::show(_busPtr, _iType, !_buffering); // faster if buffer consistency is not important
}
bool BusDigital::canShow() {
if (!_valid) return true;
return PolyBus::canShow(_busPtr, _iType);
}
void BusDigital::setBrightness(uint8_t b) {
if (_bri == b) return;
//Fix for turning off onboard LED breaking bus
#ifdef LED_BUILTIN
if (_bri == 0) { // && b > 0, covered by guard if above
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) reinit();
}
#endif
uint8_t prevBri = _bri;
Bus::setBrightness(b);
PolyBus::setBrightness(_busPtr, _iType, b);
if (_buffering) return;
// must update/repaint every LED in the NeoPixelBus buffer to the new brightness
// the only case where repainting is unnecessary is when all pixels are set after the brightness change but before the next show
// (which we can't rely on)
uint16_t hwLen = _len;
if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
for (uint_fast16_t i = 0; i < hwLen; i++) {
// use 0 as color order, actual order does not matter here as we just update the channel values as-is
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, i, 0),prevBri);
PolyBus::setPixelColor(_busPtr, _iType, i, c, 0);
}
}
//If LEDs are skipped, it is possible to use the first as a status LED.
//TODO only show if no new show due in the next 50ms
void BusDigital::setStatusPixel(uint32_t c) {
if (_valid && _skip) {
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
if (canShow()) PolyBus::show(_busPtr, _iType);
}
}
void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
if (!_valid) return;
if (Bus::hasWhite(_type)) c = autoWhiteCalc(c);
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop
size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type);
size_t offset = pix*channels;
if (Bus::hasRGB(_type)) {
_data[offset++] = R(c);
_data[offset++] = G(c);
_data[offset++] = B(c);
}
if (Bus::hasWhite(_type)) _data[offset] = W(c);
} else {
if (_reversed) pix = _len - pix -1;
pix += _skip;
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
uint16_t pOld = pix;
pix = IC_INDEX_WS2812_1CH_3X(pix);
uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co),_bri);
switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break;
case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break;
case 2: c = RGBW32(R(cOld), G(cOld), W(c) , 0); break;
}
}
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co);
}
}
// returns original color if global buffering is enabled, else returns lossly restored color from bus
uint32_t BusDigital::getPixelColor(uint16_t pix) {
if (!_valid) return 0;
if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop
size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type);
size_t offset = pix*channels;
uint32_t c;
if (!Bus::hasRGB(_type)) {
c = RGBW32(_data[offset], _data[offset], _data[offset], _data[offset]);
} else {
c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], Bus::hasWhite(_type) ? _data[offset+3] : 0);
}
return c;
} else {
if (_reversed) pix = _len - pix -1;
pix += _skip;
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
uint8_t r = R(c);
uint8_t g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
uint8_t b = _reversed ? G(c) : B(c);
switch (pix % 3) { // get only the single channel
case 0: c = RGBW32(g, g, g, g); break;
case 1: c = RGBW32(r, r, r, r); break;
case 2: c = RGBW32(b, b, b, b); break;
}
}
return c;
}
}
uint8_t BusDigital::getPins(uint8_t* pinArray) {
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
void BusDigital::setColorOrder(uint8_t colorOrder) {
// upper nibble contains W swap information
if ((colorOrder & 0x0F) > 5) return;
_colorOrder = colorOrder;
}
void BusDigital::reinit() {
if (!_valid) return;
PolyBus::begin(_busPtr, _iType, _pins);
}
void BusDigital::cleanup() {
DEBUG_PRINTLN(F("Digital Cleanup."));
PolyBus::cleanup(_busPtr, _iType);
_iType = I_NONE;
_valid = false;
_busPtr = nullptr;
if (_data != nullptr) freeData();
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
}
BusPwm::BusPwm(BusConfig &bc)
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
{
if (!IS_PWM(bc.type)) return;
uint8_t numPins = NUM_PWM_PINS(bc.type);
_frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ;
#ifdef ESP8266
analogWriteRange(255); //same range as one RGB channel
analogWriteFreq(_frequency);
#else
_ledcStart = pinManager.allocateLedc(numPins);
if (_ledcStart == 255) { //no more free LEDC channels
deallocatePins(); return;
}
#endif
for (uint8_t i = 0; i < numPins; i++) {
uint8_t currentPin = bc.pins[i];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
deallocatePins(); return;
}
_pins[i] = currentPin; //store only after allocatePin() succeeds
#ifdef ESP8266
pinMode(_pins[i], OUTPUT);
#else
ledcSetup(_ledcStart + i, _frequency, 8);
ledcAttachPin(_pins[i], _ledcStart + i);
#endif
}
_data = _pwmdata; // avoid malloc() and use stack
_valid = true;
}
void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
}
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
uint8_t cct = 0; //0 - full warm white, 255 - full cold white
if (_cct > -1) {
if (_cct >= 1900) cct = (_cct - 1900) >> 5;
else if (_cct < 256) cct = _cct;
} else {
cct = (approximateKelvinFromRGB(c) - 1900) >> 5;
}
uint8_t ww, cw;
#ifdef WLED_USE_IC_CCT
ww = w;
cw = cct;
#else
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
if (cct < _cctBlend) ww = 255;
else ww = ((255-cct) * 255) / (255 - _cctBlend);
if ((255-cct) < _cctBlend) cw = 255;
else cw = (cct * 255) / (255 - _cctBlend);
ww = (w * ww) / 255; //brightness scaling
cw = (w * cw) / 255;
#endif
switch (_type) {
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
_data[0] = w;
break;
case TYPE_ANALOG_2CH: //warm white + cold white
_data[1] = cw;
_data[0] = ww;
break;
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
_data[4] = cw;
w = ww;
case TYPE_ANALOG_4CH: //RGBW
_data[3] = w;
case TYPE_ANALOG_3CH: //standard dumb RGB
_data[0] = r; _data[1] = g; _data[2] = b;
break;
}
}
//does no index check
uint32_t BusPwm::getPixelColor(uint16_t pix) {
if (!_valid) return 0;
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
}
void BusPwm::show() {
if (!_valid) return;
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
uint8_t scaled = (_data[i] * _bri) / 255;
if (_reversed) scaled = 255 - scaled;
#ifdef ESP8266
analogWrite(_pins[i], scaled);
#else
ledcWrite(_ledcStart + i, scaled);
#endif
}
}
uint8_t BusPwm::getPins(uint8_t* pinArray) {
if (!_valid) return 0;
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
pinArray[i] = _pins[i];
}
return numPins;
}
void BusPwm::deallocatePins() {
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
if (!pinManager.isPinOk(_pins[i])) continue;
#ifdef ESP8266
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
#else
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
#endif
}
#ifdef ARDUINO_ARCH_ESP32
pinManager.deallocateLedc(_ledcStart, numPins);
#endif
}
BusOnOff::BusOnOff(BusConfig &bc)
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
, _onoffdata(0)
{
if (bc.type != TYPE_ONOFF) return;
uint8_t currentPin = bc.pins[0];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
return;
}
_pin = currentPin; //store only after allocatePin() succeeds
pinMode(_pin, OUTPUT);
_data = &_onoffdata; // avoid malloc() and use stack
_valid = true;
}
void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
c = autoWhiteCalc(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
_data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
}
uint32_t BusOnOff::getPixelColor(uint16_t pix) {
if (!_valid) return 0;
return RGBW32(_data[0], _data[0], _data[0], _data[0]);
}
void BusOnOff::show() {
if (!_valid) return;
digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
}
uint8_t BusOnOff::getPins(uint8_t* pinArray) {
if (!_valid) return 0;
pinArray[0] = _pin;
return 1;
}
BusNetwork::BusNetwork(BusConfig &bc)
: Bus(bc.type, bc.start, bc.autoWhite, bc.count)
, _broadcastLock(false)
{
switch (bc.type) {
case TYPE_NET_ARTNET_RGB:
_rgbw = false;
_UDPtype = 2;
break;
case TYPE_NET_E131_RGB:
_rgbw = false;
_UDPtype = 1;
break;
default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
_rgbw = bc.type == TYPE_NET_DDP_RGBW;
_UDPtype = 0;
break;
}
_UDPchannels = _rgbw ? 4 : 3;
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_valid = (allocData(_len * _UDPchannels) != nullptr);
}
void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
if (!_valid || pix >= _len) return;
if (_rgbw) c = autoWhiteCalc(c);
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
uint16_t offset = pix * _UDPchannels;
_data[offset] = R(c);
_data[offset+1] = G(c);
_data[offset+2] = B(c);
if (_rgbw) _data[offset+3] = W(c);
}
uint32_t BusNetwork::getPixelColor(uint16_t pix) {
if (!_valid || pix >= _len) return 0;
uint16_t offset = pix * _UDPchannels;
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (_rgbw ? _data[offset+3] : 0));
}
void BusNetwork::show() {
if (!_valid || !canShow()) return;
_broadcastLock = true;
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
_broadcastLock = false;
}
uint8_t BusNetwork::getPins(uint8_t* pinArray) {
for (uint8_t i = 0; i < 4; i++) {
pinArray[i] = _client[i];
}
return 4;
}
void BusNetwork::cleanup() {
_type = I_NONE;
_valid = false;
freeData();
}
//utility to get the approx. memory usage of a given BusConfig
uint32_t BusManager::memUsage(BusConfig &bc) {
uint8_t type = bc.type;
uint16_t len = bc.count + bc.skipAmount;
if (type > 15 && type < 32) { // digital types
if (type == TYPE_UCS8903 || type == TYPE_UCS8904) len *= 2; // 16-bit LEDs
#ifdef ESP8266
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
if (type > 28) return len*20; //RGBW
return len*15;
}
if (type > 28) return len*4; //RGBW
return len*3;
#else //ESP32 RMT uses double buffer?
if (type > 28) return len*8; //RGBW
return len*6;
#endif
}
if (type > 31 && type < 48) return 5;
return len*3; //RGB
}
int BusManager::add(BusConfig &bc) {
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
busses[numBusses] = new BusNetwork(bc);
} else if (IS_DIGITAL(bc.type)) {
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
} else if (bc.type == TYPE_ONOFF) {
busses[numBusses] = new BusOnOff(bc);
} else {
busses[numBusses] = new BusPwm(bc);
}
return numBusses++;
}
//do not call this method from system context (network callback)
void BusManager::removeAll() {
DEBUG_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
numBusses = 0;
}
void BusManager::show() {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->show();
}
}
void BusManager::setStatusPixel(uint32_t c) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setStatusPixel(c);
}
}
void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
busses[i]->setPixelColor(pix - bstart, c);
}
}
void BusManager::setBrightness(uint8_t b) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setBrightness(b);
}
}
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
if (cct > 255) cct = 255;
if (cct >= 0) {
//if white balance correction allowed, save as kelvin value instead of 0-255
if (allowWBCorrection) cct = 1900 + (cct << 5);
} else cct = -1;
Bus::setCCT(cct);
}
uint32_t BusManager::getPixelColor(uint16_t pix) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
return b->getPixelColor(pix - bstart);
}
return 0;
}
bool BusManager::canAllShow() {
for (uint8_t i = 0; i < numBusses; i++) {
if (!busses[i]->canShow()) return false;
}
return true;
}
Bus* BusManager::getBus(uint8_t busNr) {
if (busNr >= numBusses) return nullptr;
return busses[busNr];
}
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
uint16_t BusManager::getTotalLength() {
uint16_t len = 0;
for (uint8_t i=0; i<numBusses; i++) len += busses[i]->getLength();
return len;
}
// Bus static member definition
int16_t Bus::_cct = -1;
uint8_t Bus::_cctBlend = 0;
uint8_t Bus::_gAWM = 255;