forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_NNLRS.m
228 lines (201 loc) · 5.95 KB
/
multi_NNLRS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
function [Z,ZZ,E] = multi_NNLRS(X,lambda,beta,alpha)
% solve \sum_{i=1}^k(||Z_i||_*+beta||Z_i||_1+lambda||E_i||_{2,1})+alpha||ZZ||_{2,1}
tic;
% init vars
k=length(X);
[m,n]=size(X{1});
Z=cell(k,1);
Z(1:k)={zeros(n)};
E=cell(k,1);
E(1:k)={zeros(m,n)};
S=cell(k,1);
S(1:k)={zeros(n)};
J=cell(k,1);
J(1:k)={zeros(n)};
Y1=cell(k,1);
Y1(1:k)={zeros(m,n)};
Y2=cell(k,1);
Y2(1:k)={zeros(n)};
Y3=cell(k,1);
Y3(1:k)={zeros(n)};
Zk=Z;
Ek=E;
Sk=S;
Jk=J;
svp=cell(k,1);
svp(1:k)={0};
F=Z;
ZZ=zeros(k,n*n);
% precomputed values
xtx=cell(k,1);
for i=1:k
xtx{i}=X{i}'*X{i};
end
invx=cell(k,1);
for i=1:k
invx{i}=inv(xtx{i}+eye(n));
end
Xf=cell(k,1);
for i=1:k
Xf{i}=norm(X{i},'fro');
end
% the residual error and the error between Z,J,S
Xc=cell(k,1);
ZJc=cell(k,1);
ZSc=cell(k,1);
% parameters
norm2X=cell(k,1);
for i=1:k
norm2X{i}=norm(X{i},2);
end
eta1=cell(k,1);
for i=1:k
eta1{i}=norm2X{i}*norm2X{i}*1.02;%eta needs to be larger than ||X||_2^2, but need not be too large.
fprintf(1,'eta1{%d} is %f\n',i,eta1{i});
end
mu=1e-6;
max_mu=10^10;
rho=1.9;
% epsilon=1e-4;
% epsilon2=1e-5; % must be small!
epsilon=1e-6;
epsilon2=1e-2; % must be small!
MAX_ITER=1000;
iter=0;
convergenced=false;
clambda=cell(k,1);
clambda(1:k)={lambda};
cbeta=cell(k,1);
cbeta(1:k)={beta};
while ~convergenced
if iter>MAX_ITER
fprintf(1,'max iter num reached!\n');
break;
end
cmu=cell(k,1);
cmu(1:k)={mu};
% update S_i
Sk=S;
[S, svp]=cellfun(@updateS,xtx,X,E,Y1,Z,S,Y3,eta1,cmu,'UniformOutput',false);
% for i=1:k
% fprintf(1,'S{%d}, max: %f, min: %f\n',i,max(max(S{i})),min(min(S{i})));
% end
% update J_i
Jk=J;
[J]=cellfun(@updateJ,Z,J,Y2,cmu,cbeta,'UniformOutput',false);
% for i=1:k
% norm(Jk{i}-J{i})
% end
% update Z
[F]=cellfun(@updateF,J,Y2,S,Y3,cmu,'UniformOutput',false);
% normalize matrix before L21, then restore them
% CO=F;
% for i=1:k
% FN=sqrt(sum(F{i}.^2,1));
% CO{i}=FN; % CO is the column norm of matrix F
% F{i}=mnormalize_col(F{i});
% end
% save_matrix;
[M]=cellfun(@updateM,F,'UniformOutput',false);
MM=zeros(k,n*n);
for i=1:k
% TODO: normalize
% fprintf(1,'M{%d}, max: %f, min: %f\n',i,max(max(M{i})),min(min(M{i})));
% M{i} = (M{i} - min(M{i}(:))) ./ (max(M{i}(:))-min(M{i}(:)));
% fprintf(1,'M{%d},max: %f, min: %f\n',i,max(max(M{i})),min(min(M{i})));
MM(i,:)=M{i};
end
ZZ=l21(MM,alpha/(2*mu));
% if alpha==0
% assert(nnz(ZZ-MM)==0);
% end
% update Z_i
Zk=Z;
for i=1:k
Z{i}=reshape(ZZ(i,:),n,n)';
% Z{i}=Z{i}-diag(diag(Z{i}));
% Z{i}=max(Z{i},0);
% multiple the CO matrix to Z's columns
% Z{i}=Z{i}*repmat(CO{i},size(Z{i},1),1);
end
% update E_i
Ek=E;
[E]=cellfun(@updateE,X,S,E,Y1,cmu,clambda,'UniformOutput',false);
% parameter update rule
% check convergence
[Xv,Xc,ZJv,ZJc,ZSv,ZSc,Zc,Jc,Sc,Ec,Cmax] = cellfun(@caculateTempVars,X,S,E,Z,J,Zk,Jk,Sk,Ek,Xf,eta1,cmu,'UniformOutput',false);
changeX=max([Xv{:}]);
changeZJ=max([ZJv{:}]);
changeZS=max([ZSv{:}]);
gap=max([Cmax{:}]);
if mod(iter,50)==0
fprintf(1,'===========================================================================================================\n');
fprintf(1,'gap between two iteration is %e,mu is %e\n',gap,mu);
fprintf(1,'iter %d,mu is %e,ResidualX is %e,changeZJ is %e,changeZS is %e\n',iter,mu,changeX,changeZJ,changeZS);
for i=1:k
fprintf(1,'svp%d %d,',i,svp{i});
end
fprintf(1,'\n');
end
if changeX <= epsilon && gap <=epsilon2
% if changeX <= epsilon && gap <=epsilon2 && changeZJ <= epsilon && changeZS <= epsilon
convergenced=true;
fprintf(2,'convergenced, iter is %d\n',iter);
fprintf(2,'iter %d,mu is %e,ResidualX is %e,changeZJ is %e,changeZS is %e\n',iter,mu,changeX,changeZJ,changeZS);
for i=1:k
fprintf(1,'svp%d %d,',i,svp{i});
end
fprintf(1,'\n');
end
% update multipliers
[Y1]=cellfun(@updateY1,Y1,cmu,Xc,'UniformOutput',false);
[Y2]=cellfun(@updateY2,Y2,cmu,ZJc,'UniformOutput',false);
[Y3]=cellfun(@updateY3,Y3,cmu,ZSc,'UniformOutput',false);
% update parameters
if gap < epsilon2
mu=min(rho*mu,max_mu);
end
% save_matrix(J,S,Z,iter);
iter=iter+1;
end
toc;
function [S,svp] = updateS(xtx,X,E,Y1,Z,S,Y3,eta1,mu)
T=-mu*(xtx-xtx*S-X'*E+X'*Y1/mu+Z-S+Y3/mu);
% argmin_{S} 1/(mu*eta1)||S||_*+1/2*||S-S_k+T/(mu*eta1)||_F^2
[S,svp]=singular_value_shrinkage(S-T/(mu*eta1),1/(mu*eta1)); % TODO: sometimes PROPACK is slower than full svd, and sometimes it will throw the following error
% S=S-diag(diag(S));
% S=max(S,0);
function [J] = updateJ(Z,J,Y2,mu,beta)
J=wthresh(Z+Y2/mu,'s',beta/mu);
% J=J-diag(diag(J));
% J=max(J,0);
function [F] = updateF(J,Y2,S,Y3,mu)
F=0.5*(J-Y2/mu+S-Y3/mu);
function [M] = updateM(F)
n=length(F);
M=reshape(F',1,n*n);
function [E] = updateE(X,S,E,Y1,mu,lambda)
E=l21(X-X*S+Y1/mu,lambda/mu); % TODO: -E not E
function [Xv,Xc,ZJv,ZJc,ZSv,ZSc,Zc,Jc,Sc,Ec,Cmax] = caculateTempVars(X,S,E,Z,J,Zk,Jk,Sk,Ek,Xf,eta1,mu)
Xc=X-X*S-E;
ZJc=Z-J;
ZSc=Z-S;
Xv=norm(Xc,'fro')/Xf;
ZJv=norm(ZJc,'fro')/Xf;
ZSv=norm(ZSc,'fro')/Xf;
Zc=norm(Z-Zk,'fro')/Xf;
Jc=norm(J-Jk,'fro')/Xf;
Sc=norm(S-Sk,'fro')/Xf;
Ec=norm(E-Ek,'fro')/Xf;
Cmax=mu*(max([sqrt(eta1)*Sc Jc Zc Ec]));
function [Y1] = updateY1(Y1,mu,Xc)
Y1=Y1+mu*Xc;
function [Y2] = updateY2(Y2,mu,ZJc)
Y2=Y2+mu*ZJc;
function [Y3] = updateY3(Y3,mu,ZSc)
Y3=Y3+mu*ZSc;
function [] = save_matrix(J,S,Z,iter)
save(['m' num2str(iter) '.mat'],'J','S','Z');
k=length(J);
for i=1:k
end