forked from udacity/CarND-Transfer-Learning-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extraction.py
74 lines (57 loc) · 2.29 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pickle
import tensorflow as tf
import numpy as np
# TODO: import Keras layers you need here
from keras.models import Sequential,Model
from keras.layers import Input, Dense, Activation, Flatten
from sklearn.preprocessing import LabelBinarizer
flags = tf.app.flags
FLAGS = flags.FLAGS
# command line flags
flags.DEFINE_string('training_file', '', "Bottleneck features training file (.p)")
flags.DEFINE_string('validation_file', '', "Bottleneck features validation file (.p)")
# TODO epoches and bach size
flags.DEFINE_integer('epochs', 50, "The number of epochs.")
flags.DEFINE_integer('batch_size', 256, "The batch size.")
def load_bottleneck_data(training_file, validation_file):
"""
Utility function to load bottleneck features.
Arguments:
training_file - String
validation_file - String
"""
print("Training file", training_file)
print("Validation file", validation_file)
with open(training_file, 'rb') as f:
train_data = pickle.load(f)
with open(validation_file, 'rb') as f:
validation_data = pickle.load(f)
X_train = train_data['features']
y_train = train_data['labels']
X_val = validation_data['features']
y_val = validation_data['labels']
return X_train, y_train, X_val, y_val
def main(_):
# load bottleneck data
X_train, y_train, X_val, y_val = load_bottleneck_data(FLAGS.training_file, FLAGS.validation_file)
print(X_train.shape, y_train.shape)
print(X_val.shape, y_val.shape)
nb_classes = len(np.unique(y_train))
lb = LabelBinarizer()
y_one_hot = lb.fit_transform(y_train)
y_val_one_hot = lb.fit_transform(y_val)
# TODO: define your model and hyperparams here
# make sure to adjust the number of classes based on
# the dataset
# 10 for cifar10
# 43 for traffic
input_shape = X_train.shape[1:]
inp = Input(shape=input_shape)
x = Flatten()(inp)
x = Dense(nb_classes, activation='softmax')(x)
model = Model(inp, x)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# train model # Evaluate model on test data
model.fit(X_train, y_train, nb_epoch=FLAGS.epochs, batch_size=FLAGS.batch_size, validation_data=(X_val, y_val), shuffle=True)
if __name__ == '__main__':
tf.app.run()