forked from flutter/engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vulkan_swapchain.cc
587 lines (491 loc) · 20.1 KB
/
vulkan_swapchain.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "vulkan_swapchain.h"
#include "third_party/skia/include/gpu/GrBackendSurface.h"
#include "third_party/skia/include/gpu/GrDirectContext.h"
#include "third_party/skia/include/gpu/vk/GrVkTypes.h"
#include "vulkan_backbuffer.h"
#include "vulkan_device.h"
#include "vulkan_image.h"
#include "vulkan_proc_table.h"
#include "vulkan_surface.h"
namespace vulkan {
namespace {
struct FormatInfo {
VkFormat format_;
SkColorType color_type_;
sk_sp<SkColorSpace> color_space_;
};
} // namespace
static std::vector<FormatInfo> DesiredFormatInfos() {
return {{VK_FORMAT_R8G8B8A8_SRGB, kRGBA_8888_SkColorType,
SkColorSpace::MakeSRGB()},
{VK_FORMAT_B8G8R8A8_SRGB, kRGBA_8888_SkColorType,
SkColorSpace::MakeSRGB()},
{VK_FORMAT_R16G16B16A16_SFLOAT, kRGBA_F16_SkColorType,
SkColorSpace::MakeSRGBLinear()},
{VK_FORMAT_R8G8B8A8_UNORM, kRGBA_8888_SkColorType,
SkColorSpace::MakeSRGB()},
{VK_FORMAT_B8G8R8A8_UNORM, kRGBA_8888_SkColorType,
SkColorSpace::MakeSRGB()}};
}
VulkanSwapchain::VulkanSwapchain(const VulkanProcTable& p_vk,
const VulkanDevice& device,
const VulkanSurface& surface,
GrDirectContext* skia_context,
std::unique_ptr<VulkanSwapchain> old_swapchain,
uint32_t queue_family_index)
: vk(p_vk),
device_(device),
capabilities_(),
surface_format_(),
current_pipeline_stage_(VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT),
current_backbuffer_index_(0),
current_image_index_(0),
valid_(false) {
if (!device_.IsValid() || !surface.IsValid() || skia_context == nullptr) {
FML_DLOG(INFO) << "Device or surface is invalid.";
return;
}
if (!device_.GetSurfaceCapabilities(surface, &capabilities_)) {
FML_DLOG(INFO) << "Could not find surface capabilities.";
return;
}
const auto format_infos = DesiredFormatInfos();
std::vector<VkFormat> desired_formats(format_infos.size());
for (size_t i = 0; i < format_infos.size(); ++i) {
if (skia_context->colorTypeSupportedAsSurface(
format_infos[i].color_type_)) {
desired_formats[i] = format_infos[i].format_;
} else {
desired_formats[i] = VK_FORMAT_UNDEFINED;
}
}
int format_index =
device_.ChooseSurfaceFormat(surface, desired_formats, &surface_format_);
if (format_index < 0) {
FML_DLOG(INFO) << "Could not choose surface format.";
return;
}
VkPresentModeKHR present_mode = VK_PRESENT_MODE_FIFO_KHR;
if (!device_.ChoosePresentMode(surface, &present_mode)) {
FML_DLOG(INFO) << "Could not choose present mode.";
return;
}
// Check if the surface can present.
VkBool32 supported = VK_FALSE;
if (VK_CALL_LOG_ERROR(vk.GetPhysicalDeviceSurfaceSupportKHR(
device_.GetPhysicalDeviceHandle(), // physical device
queue_family_index, // queue family
surface.Handle(), // surface to test
&supported)) != VK_SUCCESS) {
FML_DLOG(INFO) << "Could not get physical device surface support.";
return;
}
if (supported != VK_TRUE) {
FML_DLOG(INFO) << "Surface was not supported by the physical device.";
return;
}
// Construct the Swapchain
VkSwapchainKHR old_swapchain_handle = VK_NULL_HANDLE;
if (old_swapchain != nullptr && old_swapchain->IsValid()) {
old_swapchain_handle = old_swapchain->swapchain_;
// The unique pointer to the swapchain will go out of scope here
// and its handle collected after the appropriate device wait.
}
VkSurfaceKHR surface_handle = surface.Handle();
VkImageUsageFlags usage_flags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
const VkSwapchainCreateInfoKHR create_info = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.pNext = nullptr,
.flags = 0,
.surface = surface_handle,
.minImageCount = capabilities_.minImageCount,
.imageFormat = surface_format_.format,
.imageColorSpace = surface_format_.colorSpace,
.imageExtent = capabilities_.currentExtent,
.imageArrayLayers = 1,
.imageUsage = usage_flags,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0, // Because of the exclusive sharing mode.
.pQueueFamilyIndices = nullptr,
.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
.presentMode = present_mode,
.clipped = VK_FALSE,
.oldSwapchain = old_swapchain_handle,
};
VkSwapchainKHR swapchain = VK_NULL_HANDLE;
if (VK_CALL_LOG_ERROR(vk.CreateSwapchainKHR(device_.GetHandle(), &create_info,
nullptr, &swapchain)) !=
VK_SUCCESS) {
FML_DLOG(INFO) << "Could not create the swapchain.";
return;
}
swapchain_ = {swapchain, [this](VkSwapchainKHR swapchain) {
FML_ALLOW_UNUSED_LOCAL(device_.WaitIdle());
vk.DestroySwapchainKHR(device_.GetHandle(), swapchain,
nullptr);
}};
if (!CreateSwapchainImages(
skia_context, format_infos[format_index].color_type_,
format_infos[format_index].color_space_, usage_flags)) {
FML_DLOG(INFO) << "Could not create swapchain images.";
return;
}
valid_ = true;
}
VulkanSwapchain::~VulkanSwapchain() = default;
bool VulkanSwapchain::IsValid() const {
return valid_;
}
std::vector<VkImage> VulkanSwapchain::GetImages() const {
uint32_t count = 0;
if (VK_CALL_LOG_ERROR(vk.GetSwapchainImagesKHR(
device_.GetHandle(), swapchain_, &count, nullptr)) != VK_SUCCESS) {
return {};
}
if (count == 0) {
return {};
}
std::vector<VkImage> images;
images.resize(count);
if (VK_CALL_LOG_ERROR(vk.GetSwapchainImagesKHR(
device_.GetHandle(), swapchain_, &count, images.data())) !=
VK_SUCCESS) {
return {};
}
return images;
}
SkISize VulkanSwapchain::GetSize() const {
VkExtent2D extents = capabilities_.currentExtent;
if (extents.width < capabilities_.minImageExtent.width) {
extents.width = capabilities_.minImageExtent.width;
} else if (extents.width > capabilities_.maxImageExtent.width) {
extents.width = capabilities_.maxImageExtent.width;
}
if (extents.height < capabilities_.minImageExtent.height) {
extents.height = capabilities_.minImageExtent.height;
} else if (extents.height > capabilities_.maxImageExtent.height) {
extents.height = capabilities_.maxImageExtent.height;
}
return SkISize::Make(extents.width, extents.height);
}
sk_sp<SkSurface> VulkanSwapchain::CreateSkiaSurface(
GrDirectContext* gr_context,
VkImage image,
VkImageUsageFlags usage_flags,
const SkISize& size,
SkColorType color_type,
sk_sp<SkColorSpace> color_space) const {
if (gr_context == nullptr) {
return nullptr;
}
if (color_type == kUnknown_SkColorType) {
// Unexpected Vulkan format.
return nullptr;
}
GrVkImageInfo image_info;
image_info.fImage = image;
image_info.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
image_info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_info.fFormat = surface_format_.format;
image_info.fImageUsageFlags = usage_flags;
image_info.fSampleCount = 1;
image_info.fLevelCount = 1;
// TODO(chinmaygarde): Setup the stencil buffer and the sampleCnt.
GrBackendRenderTarget backend_render_target(size.fWidth, size.fHeight, 0,
image_info);
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
return SkSurface::MakeFromBackendRenderTarget(
gr_context, // context
backend_render_target, // backend render target
kTopLeft_GrSurfaceOrigin, // origin
color_type, // color type
std::move(color_space), // color space
&props // surface properties
);
}
bool VulkanSwapchain::CreateSwapchainImages(GrDirectContext* skia_context,
SkColorType color_type,
sk_sp<SkColorSpace> color_space,
VkImageUsageFlags usage_flags) {
std::vector<VkImage> images = GetImages();
if (images.empty()) {
return false;
}
const SkISize surface_size = GetSize();
for (const VkImage& image : images) {
// Populate the backbuffer.
auto backbuffer = std::make_unique<VulkanBackbuffer>(
vk, device_.GetHandle(), device_.GetCommandPool());
if (!backbuffer->IsValid()) {
return false;
}
backbuffers_.emplace_back(std::move(backbuffer));
// Populate the image.
auto vulkan_image = std::make_unique<VulkanImage>(image);
if (!vulkan_image->IsValid()) {
return false;
}
images_.emplace_back(std::move(vulkan_image));
// Populate the surface.
auto surface = CreateSkiaSurface(skia_context, image, usage_flags,
surface_size, color_type, color_space);
if (surface == nullptr) {
return false;
}
surfaces_.emplace_back(std::move(surface));
}
FML_DCHECK(backbuffers_.size() == images_.size());
FML_DCHECK(images_.size() == surfaces_.size());
return true;
}
VulkanBackbuffer* VulkanSwapchain::GetNextBackbuffer() {
auto available_backbuffers = backbuffers_.size();
if (available_backbuffers == 0) {
return nullptr;
}
auto next_backbuffer_index =
(current_backbuffer_index_ + 1) % backbuffers_.size();
auto& backbuffer = backbuffers_[next_backbuffer_index];
if (!backbuffer->IsValid()) {
return nullptr;
}
current_backbuffer_index_ = next_backbuffer_index;
return backbuffer.get();
}
VulkanSwapchain::AcquireResult VulkanSwapchain::AcquireSurface() {
AcquireResult error = {AcquireStatus::ErrorSurfaceLost, nullptr};
if (!IsValid()) {
FML_DLOG(INFO) << "Swapchain was invalid.";
return error;
}
// ---------------------------------------------------------------------------
// Step 0:
// Acquire the next available backbuffer.
// ---------------------------------------------------------------------------
auto backbuffer = GetNextBackbuffer();
if (backbuffer == nullptr) {
FML_DLOG(INFO) << "Could not get the next backbuffer.";
return error;
}
// ---------------------------------------------------------------------------
// Step 1:
// Wait for use readiness.
// ---------------------------------------------------------------------------
if (!backbuffer->WaitFences()) {
FML_DLOG(INFO) << "Failed waiting on fences.";
return error;
}
// ---------------------------------------------------------------------------
// Step 2:
// Put fences in an unsignaled state.
// ---------------------------------------------------------------------------
if (!backbuffer->ResetFences()) {
FML_DLOG(INFO) << "Could not reset fences.";
return error;
}
// ---------------------------------------------------------------------------
// Step 3:
// Acquire the next image index.
// ---------------------------------------------------------------------------
uint32_t next_image_index = 0;
VkResult acquire_result = VK_CALL_LOG_ERROR(
vk.AcquireNextImageKHR(device_.GetHandle(), //
swapchain_, //
std::numeric_limits<uint64_t>::max(), //
backbuffer->GetUsageSemaphore(), //
VK_NULL_HANDLE, //
&next_image_index));
switch (acquire_result) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_DATE_KHR:
return {AcquireStatus::ErrorSurfaceOutOfDate, nullptr};
case VK_ERROR_SURFACE_LOST_KHR:
return {AcquireStatus::ErrorSurfaceLost, nullptr};
default:
FML_LOG(INFO) << "Unexpected result from AcquireNextImageKHR: "
<< acquire_result;
return {AcquireStatus::ErrorSurfaceLost, nullptr};
}
// Simple sanity checking of image index.
if (next_image_index >= images_.size()) {
FML_DLOG(INFO) << "Image index returned was out-of-bounds.";
return error;
}
auto& image = images_[next_image_index];
if (!image->IsValid()) {
FML_DLOG(INFO) << "Image at index was invalid.";
return error;
}
// ---------------------------------------------------------------------------
// Step 4:
// Start recording to the command buffer.
// ---------------------------------------------------------------------------
if (!backbuffer->GetUsageCommandBuffer().Begin()) {
FML_DLOG(INFO) << "Could not begin recording to the command buffer.";
return error;
}
// ---------------------------------------------------------------------------
// Step 5:
// Set image layout to color attachment mode.
// ---------------------------------------------------------------------------
VkPipelineStageFlagBits destination_pipeline_stage =
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkImageLayout destination_image_layout =
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
if (!image->InsertImageMemoryBarrier(
backbuffer->GetUsageCommandBuffer(), // command buffer
current_pipeline_stage_, // src_pipeline_bits
destination_pipeline_stage, // dest_pipeline_bits
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // dest_access_flags
destination_image_layout // dest_layout
)) {
FML_DLOG(INFO) << "Could not insert image memory barrier.";
return error;
} else {
current_pipeline_stage_ = destination_pipeline_stage;
}
// ---------------------------------------------------------------------------
// Step 6:
// End recording to the command buffer.
// ---------------------------------------------------------------------------
if (!backbuffer->GetUsageCommandBuffer().End()) {
FML_DLOG(INFO) << "Could not end recording to the command buffer.";
return error;
}
// ---------------------------------------------------------------------------
// Step 7:
// Submit the command buffer to the device queue.
// ---------------------------------------------------------------------------
std::vector<VkSemaphore> wait_semaphores = {backbuffer->GetUsageSemaphore()};
std::vector<VkSemaphore> signal_semaphores = {};
std::vector<VkCommandBuffer> command_buffers = {
backbuffer->GetUsageCommandBuffer().Handle()};
if (!device_.QueueSubmit(
{destination_pipeline_stage}, // wait_dest_pipeline_stages
wait_semaphores, // wait_semaphores
signal_semaphores, // signal_semaphores
command_buffers, // command_buffers
backbuffer->GetUsageFence() // fence
)) {
FML_DLOG(INFO) << "Could not submit to the device queue.";
return error;
}
// ---------------------------------------------------------------------------
// Step 8:
// Tell Skia about the updated image layout.
// ---------------------------------------------------------------------------
sk_sp<SkSurface> surface = surfaces_[next_image_index];
if (surface == nullptr) {
FML_DLOG(INFO) << "Could not access surface at the image index.";
return error;
}
GrBackendRenderTarget backendRT = surface->getBackendRenderTarget(
SkSurface::kFlushRead_BackendHandleAccess);
if (!backendRT.isValid()) {
FML_DLOG(INFO) << "Could not get backend render target.";
return error;
}
backendRT.setVkImageLayout(destination_image_layout);
current_image_index_ = next_image_index;
return {AcquireStatus::Success, surface};
}
bool VulkanSwapchain::Submit() {
if (!IsValid()) {
FML_DLOG(INFO) << "Swapchain was invalid.";
return false;
}
sk_sp<SkSurface> surface = surfaces_[current_image_index_];
const std::unique_ptr<VulkanImage>& image = images_[current_image_index_];
auto backbuffer = backbuffers_[current_backbuffer_index_].get();
// ---------------------------------------------------------------------------
// Step 0:
// Make sure Skia has flushed all work for the surface to the gpu.
// ---------------------------------------------------------------------------
surface->flushAndSubmit();
// ---------------------------------------------------------------------------
// Step 1:
// Start recording to the command buffer.
// ---------------------------------------------------------------------------
if (!backbuffer->GetRenderCommandBuffer().Begin()) {
FML_DLOG(INFO) << "Could not start recording to the command buffer.";
return false;
}
// ---------------------------------------------------------------------------
// Step 2:
// Set image layout to present mode.
// ---------------------------------------------------------------------------
VkPipelineStageFlagBits destination_pipeline_stage =
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkImageLayout destination_image_layout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
if (!image->InsertImageMemoryBarrier(
backbuffer->GetRenderCommandBuffer(), // command buffer
current_pipeline_stage_, // src_pipeline_bits
destination_pipeline_stage, // dest_pipeline_bits
VK_ACCESS_MEMORY_READ_BIT, // dest_access_flags
destination_image_layout // dest_layout
)) {
FML_DLOG(INFO) << "Could not insert memory barrier.";
return false;
} else {
current_pipeline_stage_ = destination_pipeline_stage;
}
// ---------------------------------------------------------------------------
// Step 3:
// End recording to the command buffer.
// ---------------------------------------------------------------------------
if (!backbuffer->GetRenderCommandBuffer().End()) {
FML_DLOG(INFO) << "Could not end recording to the command buffer.";
return false;
}
// ---------------------------------------------------------------------------
// Step 4:
// Submit the command buffer to the device queue. Tell it to signal the render
// semaphore.
// ---------------------------------------------------------------------------
std::vector<VkSemaphore> wait_semaphores = {};
std::vector<VkSemaphore> queue_signal_semaphores = {
backbuffer->GetRenderSemaphore()};
std::vector<VkCommandBuffer> command_buffers = {
backbuffer->GetRenderCommandBuffer().Handle()};
if (!device_.QueueSubmit(
{/* Empty. No wait semaphores. */}, // wait_dest_pipeline_stages
wait_semaphores, // wait_semaphores
queue_signal_semaphores, // signal_semaphores
command_buffers, // command_buffers
backbuffer->GetRenderFence() // fence
)) {
FML_DLOG(INFO) << "Could not submit to the device queue.";
return false;
}
// ---------------------------------------------------------------------------
// Step 5:
// Submit the present operation and wait on the render semaphore.
// ---------------------------------------------------------------------------
VkSwapchainKHR swapchain = swapchain_;
uint32_t present_image_index = static_cast<uint32_t>(current_image_index_);
const VkPresentInfoKHR present_info = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.pNext = nullptr,
.waitSemaphoreCount =
static_cast<uint32_t>(queue_signal_semaphores.size()),
.pWaitSemaphores = queue_signal_semaphores.data(),
.swapchainCount = 1,
.pSwapchains = &swapchain,
.pImageIndices = &present_image_index,
.pResults = nullptr,
};
if (VK_CALL_LOG_ERROR(vk.QueuePresentKHR(device_.GetQueueHandle(),
&present_info)) != VK_SUCCESS) {
FML_DLOG(INFO) << "Could not submit the present operation.";
return false;
}
return true;
}
} // namespace vulkan