forked from openscad/openscad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecompose.cpp
681 lines (620 loc) · 21.5 KB
/
decompose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#include <boost/foreach.hpp>
#include <boost/filesystem.hpp>
#include <boost/regex.hpp>
#include <sstream>
#include <iostream>
#include <locale.h>
#include "cgalutils.h"
#include "memory.h"
#include "export.h"
#include "polyset.h"
#include "CGAL_Nef_polyhedron.h"
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
using namespace CGALUtils;
namespace fs = boost::filesystem;
// Nef polyhedron are using CGAL_Kernel3 (Cartesian<Gmpq>)
// Triangulation will use Epick
typedef CGAL::Epick K;
typedef CGAL::Polyhedron_3<K> PolyhedronK;
#include <boost/algorithm/string.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/assign/list_of.hpp>
using namespace boost::assign; // bring 'operator+=()' into scope
std::vector<Color4f> colors = boost::assign::list_of
(Color4f(240, 248, 255))
(Color4f(250, 235, 215))
(Color4f(0, 255, 255))
(Color4f(127, 255, 212))
(Color4f(240, 255, 255))
(Color4f(245, 245, 220))
(Color4f(255, 228, 196))
(Color4f(0, 0, 0))
(Color4f(255, 235, 205))
(Color4f(0, 0, 255))
(Color4f(138, 43, 226))
(Color4f(165, 42, 42))
(Color4f(222, 184, 135))
(Color4f(95, 158, 160))
(Color4f(127, 255, 0))
(Color4f(210, 105, 30))
(Color4f(255, 127, 80))
(Color4f(100, 149, 237))
(Color4f(255, 248, 220))
(Color4f(220, 20, 60))
(Color4f(0, 255, 255))
(Color4f(0, 0, 139))
(Color4f(0, 139, 139))
(Color4f(184, 134, 11))
(Color4f(169, 169, 169))
(Color4f(0, 100, 0))
(Color4f(169, 169, 169))
(Color4f(189, 183, 107))
(Color4f(139, 0, 139))
(Color4f(85, 107, 47))
(Color4f(255, 140, 0))
(Color4f(153, 50, 204))
(Color4f(139, 0, 0))
(Color4f(233, 150, 122))
(Color4f(143, 188, 143))
(Color4f(72, 61, 139))
(Color4f(47, 79, 79))
(Color4f(47, 79, 79))
(Color4f(0, 206, 209))
(Color4f(148, 0, 211))
(Color4f(255, 20, 147))
(Color4f(0, 191, 255))
(Color4f(105, 105, 105))
(Color4f(105, 105, 105))
(Color4f(30, 144, 255))
(Color4f(178, 34, 34))
(Color4f(255, 250, 240))
(Color4f(34, 139, 34))
(Color4f(255, 0, 255))
(Color4f(220, 220, 220))
(Color4f(248, 248, 255))
(Color4f(255, 215, 0))
(Color4f(218, 165, 32))
(Color4f(128, 128, 128))
(Color4f(0, 128, 0))
(Color4f(173, 255, 47))
(Color4f(128, 128, 128))
(Color4f(240, 255, 240))
(Color4f(255, 105, 180))
(Color4f(205, 92, 92))
(Color4f(75, 0, 130))
(Color4f(255, 255, 240))
(Color4f(240, 230, 140))
(Color4f(230, 230, 250))
(Color4f(255, 240, 245))
(Color4f(124, 252, 0))
(Color4f(255, 250, 205))
(Color4f(173, 216, 230))
(Color4f(240, 128, 128))
(Color4f(224, 255, 255))
(Color4f(250, 250, 210))
(Color4f(211, 211, 211))
(Color4f(144, 238, 144))
(Color4f(211, 211, 211))
(Color4f(255, 182, 193))
(Color4f(255, 160, 122))
(Color4f(32, 178, 170))
(Color4f(135, 206, 250))
(Color4f(119, 136, 153))
(Color4f(119, 136, 153))
(Color4f(176, 196, 222))
(Color4f(255, 255, 224))
(Color4f(0, 255, 0))
(Color4f(50, 205, 50))
(Color4f(250, 240, 230))
(Color4f(255, 0, 255))
(Color4f(128, 0, 0))
(Color4f(102, 205, 170))
(Color4f(0, 0, 205))
(Color4f(186, 85, 211))
(Color4f(147, 112, 219))
(Color4f(60, 179, 113))
(Color4f(123, 104, 238))
(Color4f(0, 250, 154))
(Color4f(72, 209, 204))
(Color4f(199, 21, 133))
(Color4f(25, 25, 112))
(Color4f(245, 255, 250))
(Color4f(255, 228, 225))
(Color4f(255, 228, 181))
(Color4f(255, 222, 173))
(Color4f(0, 0, 128))
(Color4f(253, 245, 230))
(Color4f(128, 128, 0))
(Color4f(107, 142, 35))
(Color4f(255, 165, 0))
(Color4f(255, 69, 0))
(Color4f(218, 112, 214))
(Color4f(238, 232, 170))
(Color4f(152, 251, 152))
(Color4f(175, 238, 238))
(Color4f(219, 112, 147))
(Color4f(255, 239, 213))
(Color4f(255, 218, 185))
(Color4f(205, 133, 63))
(Color4f(255, 192, 203))
(Color4f(221, 160, 221))
(Color4f(176, 224, 230))
(Color4f(128, 0, 128))
(Color4f(255, 0, 0))
(Color4f(188, 143, 143))
(Color4f(65, 105, 225))
(Color4f(139, 69, 19))
(Color4f(250, 128, 114))
(Color4f(244, 164, 96))
(Color4f(46, 139, 87))
(Color4f(255, 245, 238))
(Color4f(160, 82, 45))
(Color4f(192, 192, 192))
(Color4f(135, 206, 235))
(Color4f(106, 90, 205))
(Color4f(112, 128, 144))
(Color4f(112, 128, 144))
(Color4f(255, 250, 250))
(Color4f(0, 255, 127))
(Color4f(70, 130, 180))
(Color4f(210, 180, 140))
(Color4f(0, 128, 128))
(Color4f(216, 191, 216))
(Color4f(255, 99, 71))
(Color4f(0, 0, 0, 0))
(Color4f(64, 224, 208))
(Color4f(238, 130, 238))
(Color4f(245, 222, 179))
(Color4f(255, 255, 255))
(Color4f(245, 245, 245))
(Color4f(255, 255, 0))
(Color4f(154, 205, 50));
#include <boost/unordered_set.hpp>
#include <CGAL/convex_hull_3.h>
template<typename Polyhedron>
bool is_weakly_convex(Polyhedron const& p) {
for (typename Polyhedron::Edge_const_iterator i = p.edges_begin(); i != p.edges_end(); ++i) {
typename Polyhedron::Plane_3 p(i->opposite()->vertex()->point(), i->vertex()->point(), i->next()->vertex()->point());
if (p.has_on_positive_side(i->opposite()->next()->vertex()->point()) &&
CGAL::squared_distance(p, i->opposite()->next()->vertex()->point()) > 1e-8) {
return false;
}
}
// Also make sure that there is only one shell:
boost::unordered_set<typename Polyhedron::Facet_const_handle, typename CGAL::Handle_hash_function> visited;
// c++11
// visited.reserve(p.size_of_facets());
std::queue<typename Polyhedron::Facet_const_handle> to_explore;
to_explore.push(p.facets_begin()); // One arbitrary facet
visited.insert(to_explore.front());
while (!to_explore.empty()) {
typename Polyhedron::Facet_const_handle f = to_explore.front();
to_explore.pop();
typename Polyhedron::Facet::Halfedge_around_facet_const_circulator he, end;
end = he = f->facet_begin();
CGAL_For_all(he,end) {
typename Polyhedron::Facet_const_handle o = he->opposite()->facet();
if (!visited.count(o)) {
visited.insert(o);
to_explore.push(o);
}
}
}
return visited.size() == p.size_of_facets();
}
class Shell_explorer
{
public:
std::vector<K::Point_3> vertices;
Shell_explorer() {}
void visit(CGAL_Nef_polyhedron3::Vertex_const_handle v) {
vertices.push_back(K::Point_3(to_double(v->point()[0]),
to_double(v->point()[1]),
to_double(v->point()[2])));
}
void visit(CGAL_Nef_polyhedron3::Halfedge_const_handle ) {}
void visit(CGAL_Nef_polyhedron3::Halffacet_const_handle ) {}
void visit(CGAL_Nef_polyhedron3::SHalfedge_const_handle ) {}
void visit(CGAL_Nef_polyhedron3::SHalfloop_const_handle ) {}
void visit(CGAL_Nef_polyhedron3::SFace_const_handle ) {}
};
template<class Output>
void decompose(const CGAL_Nef_polyhedron3 *N, Output out_iter)
{
int parts = 0;
assert(N);
CGAL_Polyhedron poly;
if (N->is_simple()) {
nefworkaround::convert_to_Polyhedron<CGAL_Kernel3>(*N, poly);
}
if (is_weakly_convex(poly)) {
PRINTD("Minkowski: Object is convex and Nef");
PolyhedronK poly2;
CGALUtils::copyPolyhedron(poly, poly2);
*out_iter++ = poly2;
return;
}
else {
PRINTD("Minkowski: Object is nonconvex Nef, decomposing...");
CGAL_Nef_polyhedron3 decomposed_nef = *N;
CGAL::convex_decomposition_3(decomposed_nef);
// the first volume is the outer volume, which ignored in the decomposition
CGAL_Nef_polyhedron3::Volume_const_iterator ci = ++decomposed_nef.volumes_begin();
// Convert each convex volume to a Polyhedron
for(; ci != decomposed_nef.volumes_end(); ++ci) {
if(ci->mark()) {
// CGAL_Polyhedron poly;
// decomposed_nef.convert_inner_shell_to_polyhedron(ci->shells_begin(), poly);
// P.push_back(poly);
auto s = CGAL_Nef_polyhedron3::SFace_const_handle(ci->shells_begin());
CGAL_Nef_polyhedron3::SFace_const_iterator sf = ci->shells_begin();
Shell_explorer SE;
decomposed_nef.visit_shell_objects(CGAL_Nef_polyhedron3::SFace_const_handle(sf),SE);
PolyhedronK poly;
CGAL::convex_hull_3(SE.vertices.begin(), SE.vertices.end(), poly);
*out_iter++ = poly;
parts++;
}
}
PRINTDB("Minkowski: decomposed into %d convex parts", parts);
}
}
Geometry const * minkowskitest(const Geometry::Geometries &children)
{
CGAL::Timer t,t_tot;
assert(children.size() >= 2);
// Iterate over children, perform pairwise minkowski on children:
// operands = [ch, ch+1]
Geometry::Geometries::const_iterator minkowski_ch_it = children.begin();
t_tot.start();
Geometry const *operands[2] = {minkowski_ch_it->second.get(), NULL};
try {
while (++minkowski_ch_it != children.end()) {
operands[1] = minkowski_ch_it->second.get();
std::vector<PolyhedronK> convexP[2]; // Stores decomposed operands
std::list<PolyhedronK> result_parts;
for (int i = 0; i < 2; i++) {
shared_ptr<const CGAL_Nef_polyhedron> N;
if (const PolySet *ps = dynamic_cast<const PolySet *>(operands[i])) {
if (ps->is_convex()) {
PRINTDB("Minkowski: child %d is convex and PolySet", i);
PolyhedronK poly;
CGALUtils::createPolyhedronFromPolySet(*ps, poly);
convexP[i].push_back(poly);
}
else {
PRINTDB("Minkowski: child %d is nonconvex PolySet, transforming to Nef", i);
N.reset(createNefPolyhedronFromGeometry(*ps));
}
}
else if (const CGAL_Nef_polyhedron *n = dynamic_cast<const CGAL_Nef_polyhedron *>(operands[i])) {
CGAL_Polyhedron poly;
if (n->p3->is_simple()) {
nefworkaround::convert_to_Polyhedron<CGAL_Kernel3>(*n->p3, poly);
// FIXME: Can we calculate weakly_convex on a PolyhedronK instead?
if (is_weakly_convex(poly)) {
PRINTDB("Minkowski: child %d is convex and Nef", i);
PolyhedronK poly2;
CGALUtils::copyPolyhedron(poly, poly2);
convexP[i].push_back(poly2);
}
else {
PRINTDB("Minkowski: child %d is nonconvex Nef",i);
N.reset(n);
}
}
else throw 0; // We cannot handle this, fall back to CGAL's minkowski
}
// If not convex...
if (N && N->p3) {
PRINTD("Decomposing...");
decompose(N->p3.get(), std::back_inserter(convexP[i]));
}
PRINTD("Hulling convex parts...");
std::vector<K::Point_3> points[2];
std::vector<K::Point_3> minkowski_points;
// For each permutation of convex operands..
BOOST_FOREACH(const PolyhedronK &p0, convexP[0]) {
BOOST_FOREACH(const PolyhedronK &p1, convexP[1]) {
t.start();
// Create minkowski pointcloud
minkowski_points.clear();
minkowski_points.reserve(p0.size_of_vertices() * p0.size_of_vertices());
BOOST_FOREACH(const K::Point_3 &p0p, std::make_pair(p0.points_begin(), p0.points_end())) {
BOOST_FOREACH(const K::Point_3 &p1p, std::make_pair(p1.points_begin(), p1.points_end())) {
minkowski_points.push_back(p0p+(p1p-CGAL::ORIGIN));
}
}
t.stop();
// Ignore empty volumes
if (minkowski_points.size() <= 3) continue;
// Hull point cloud
PolyhedronK result;
PRINTDB("Minkowski: Point cloud creation (%d ⨉ %d -> %d) took %f ms",
points[0].size() % points[1].size() % minkowski_points.size() % (t.time()*1000));
t.reset();
t.start();
CGAL::convex_hull_3(minkowski_points.begin(), minkowski_points.end(), result);
std::vector<K::Point_3> strict_points;
strict_points.reserve(minkowski_points.size());
for (PolyhedronK::Vertex_iterator i = result.vertices_begin(); i != result.vertices_end(); ++i) {
K::Point_3 const &p = i->point();
PolyhedronK::Vertex::Halfedge_handle h,e;
h = i->halfedge();
e = h;
bool collinear = false;
bool coplanar = true;
do {
K::Point_3 const& q = h->opposite()->vertex()->point();
if (coplanar && !CGAL::coplanar(p,q,
h->next_on_vertex()->opposite()->vertex()->point(),
h->next_on_vertex()->next_on_vertex()->opposite()->vertex()->point())) {
coplanar = false;
}
for (PolyhedronK::Vertex::Halfedge_handle j = h->next_on_vertex();
j != h && !collinear && ! coplanar;
j = j->next_on_vertex()) {
K::Point_3 const& r = j->opposite()->vertex()->point();
if (CGAL::collinear(p,q,r)) {
collinear = true;
}
}
h = h->next_on_vertex();
} while (h != e && !collinear);
if (!collinear && !coplanar) strict_points.push_back(p);
}
result.clear();
CGAL::convex_hull_3(strict_points.begin(), strict_points.end(), result);
t.stop();
PRINTDB("Minkowski: Computing convex hull took %f s", t.time());
t.reset();
result_parts.push_back(result);
}
}
}
if (minkowski_ch_it != boost::next(children.begin())) delete operands[0];
if (result_parts.size() == 1) {
PolySet *ps = new PolySet(3,true);
createPolySetFromPolyhedron(*result_parts.begin(), *ps);
operands[0] = ps;
} else if (!result_parts.empty()) {
t.start();
PRINTDB("Minkowski: Computing union of %d parts",result_parts.size());
Geometry::Geometries fake_children;
for (const auto &polyhedron : result_parts) {
PolySet ps(3,true);
createPolySetFromPolyhedron(polyhedron, ps);
fake_children.push_back(std::make_pair((const AbstractNode*)NULL,
shared_ptr<const Geometry>(createNefPolyhedronFromGeometry(ps))));
}
CGAL_Nef_polyhedron *N = CGALUtils::applyOperator(fake_children, OPENSCAD_UNION);
t.stop();
if (N) PRINTDB("Minkowski: Union done: %f s",t.time());
else PRINTDB("Minkowski: Union failed: %f s",t.time());
t.reset();
operands[0] = N;
} else {
operands[0] = new CGAL_Nef_polyhedron();
}
}
t_tot.stop();
PRINTDB("Minkowski: Total execution time %f s", t_tot.time());
t_tot.reset();
return operands[0];
}
catch (...) {
// If anything throws we simply fall back to Nef Minkowski
PRINTD("Minkowski: Falling back to Nef Minkowski");
CGAL_Nef_polyhedron *N = applyOperator(children, OPENSCAD_MINKOWSKI);
return N;
}
}
#define STL_FACET_NUMBYTES 4*3*4+2
// as there is no 'float32_t' standard, we assume the systems 'float'
// is a 'binary32' aka 'single' standard IEEE 32-bit floating point type
union stl_facet {
uint8_t data8[ STL_FACET_NUMBYTES ];
uint32_t data32[4*3];
struct facet_data {
float i, j, k;
float x1, y1, z1;
float x2, y2, z2;
float x3, y3, z3;
uint16_t attribute_byte_count;
} data;
};
void uint32_byte_swap( uint32_t &x )
{
#if __GNUC__ >= 4 && __GNUC_MINOR__ >= 3
x = __builtin_bswap32( x );
#elif defined(__clang__)
x = __builtin_bswap32( x );
#elif defined(_MSC_VER)
x = _byteswap_ulong( x );
#else
uint32_t b1 = ( 0x000000FF & x ) << 24;
uint32_t b2 = ( 0x0000FF00 & x ) << 8;
uint32_t b3 = ( 0x00FF0000 & x ) >> 8;
uint32_t b4 = ( 0xFF000000 & x ) >> 24;
x = b1 | b2 | b3 | b4;
#endif
}
void read_stl_facet( std::ifstream &f, stl_facet &facet )
{
f.read( (char*)facet.data8, STL_FACET_NUMBYTES );
#ifdef BOOST_BIG_ENDIAN
for ( int i = 0; i < 12; i++ ) {
uint32_byte_swap( facet.data32[ i ] );
}
// we ignore attribute byte count
#endif
}
PolySet *import_stl(const std::string &filename)
{
PolySet *p = new PolySet(3);
// Open file and position at the end
std::ifstream f(filename.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
if (!f.good()) {
PRINTB("WARNING: Can't open import file '%s'.", filename);
return NULL;
}
boost::regex ex_sfe("solid|facet|endloop");
boost::regex ex_outer("outer loop");
boost::regex ex_vertex("vertex");
boost::regex ex_vertices("\\s*vertex\\s+([^\\s]+)\\s+([^\\s]+)\\s+([^\\s]+)");
bool binary = false;
std::streampos file_size = f.tellg();
f.seekg(80);
if (f.good() && !f.eof()) {
uint32_t facenum = 0;
f.read((char *)&facenum, sizeof(uint32_t));
#ifdef BOOST_BIG_ENDIAN
uint32_byte_swap( facenum );
#endif
if (file_size == static_cast<std::streamoff>(80 + 4 + 50*facenum)) {
binary = true;
}
}
f.seekg(0);
char data[5];
f.read(data, 5);
if (!binary && !f.eof() && f.good() && !memcmp(data, "solid", 5)) {
int i = 0;
double vdata[3][3];
std::string line;
std::getline(f, line);
while (!f.eof()) {
std::getline(f, line);
boost::trim(line);
if (boost::regex_search(line, ex_sfe)) {
continue;
}
if (boost::regex_search(line, ex_outer)) {
i = 0;
continue;
}
boost::smatch results;
if (boost::regex_search(line, results, ex_vertices)) {
try {
for (int v=0;v<3;v++) {
vdata[i][v] = boost::lexical_cast<double>(results[v+1]);
}
}
catch (const boost::bad_lexical_cast &blc) {
PRINTB("WARNING: Can't parse vertex line '%s'.", line);
i = 10;
continue;
}
if (++i == 3) {
p->append_poly();
p->append_vertex(vdata[0][0], vdata[0][1], vdata[0][2]);
p->append_vertex(vdata[1][0], vdata[1][1], vdata[1][2]);
p->append_vertex(vdata[2][0], vdata[2][1], vdata[2][2]);
}
}
}
}
else if (binary && !f.eof() && f.good())
{
f.ignore(80-5+4);
while (1) {
stl_facet facet;
read_stl_facet( f, facet );
if (f.eof()) break;
p->append_poly();
p->append_vertex(facet.data.x1, facet.data.y1, facet.data.z1);
p->append_vertex(facet.data.x2, facet.data.y2, facet.data.z2);
p->append_vertex(facet.data.x3, facet.data.y3, facet.data.z3);
}
}
return p;
}
/*!
file format:
1. polygon coordinates (x,y,z) are comma separated (+/- spaces) and
each coordinate is on a separate line
2. each polygon is separated by one or more blank lines
*/
bool import_polygon(PolyholeK &polyhole, const std::string &filename)
{
std::ifstream ifs(filename.c_str());
if (!ifs) return false;
std::string line;
PolygonK polygon;
while (std::getline(ifs, line)) {
std::stringstream ss(line);
double X = 0.0, Y = 0.0, Z = 0.0;
if (!(ss >> X)) {
//ie blank lines => flag start of next polygon
if (polygon.size() > 0) polyhole.push_back(polygon);
polygon.clear();
continue;
}
char c = ss.peek();
while (c == ' ') {ss.read(&c, 1); c = ss.peek();} //gobble spaces before comma
if (c == ',') {ss.read(&c, 1); c = ss.peek();} //gobble comma
while (c == ' ') {ss.read(&c, 1); c = ss.peek();} //gobble spaces after comma
if (!(ss >> Y)) {
std::cerr << "Y error\n";
return false;
}
c = ss.peek();
while (c == ' ') {ss.read(&c, 1); c = ss.peek();} //gobble spaces before comma
if (c == ',') {ss.read(&c, 1); c = ss.peek();} //gobble comma
while (c == ' ') {ss.read(&c, 1); c = ss.peek();} //gobble spaces after comma
if (!(ss >> Z)) {
std::cerr << "Z error\n";
return false;
}
polygon.push_back(Vertex3K(X, Y, Z));
}
if (polygon.size() > 0) polyhole.push_back(polygon);
ifs.close();
return true;
}
//------------------------------------------------------------------------------
int main(int argc, char *argv[])
{
OpenSCAD::debug = "decompose";
PolySet *ps = NULL;
CGAL_Nef_polyhedron *N = NULL;
if (argc == 2) {
std::string filename(argv[1]);
std::string suffix = fs::path(filename).extension().generic_string();
if (suffix == ".stl") {
if (!(ps = import_stl(filename))) {
std::cerr << "Error importing STL " << filename << std::endl;
exit(1);
}
std::cerr << "Imported " << ps->numPolygons() << " polygons" << std::endl;
}
else if (suffix == ".nef3") {
N = new CGAL_Nef_polyhedron(new CGAL_Nef_polyhedron3);
std::ifstream stream(filename.c_str());
stream >> *N->p3;
std::cerr << "Imported Nef polyhedron" << std::endl;
}
}
else {
std::cerr << "Usage: " << argv[0] << " <file.stl> <file.stl>" << std::endl;
exit(1);
}
if (ps && !N) N = createNefPolyhedronFromGeometry(*ps);
std::vector<PolyhedronK> result;
decompose(N->p3.get(), std::back_inserter(result));
std::cerr << "Decomposed into " << result.size() << " convex parts" << std::endl;
int idx = 0;
BOOST_FOREACH(const PolyhedronK &P, result) {
PolySet *result_ps = new PolySet(3);
if (CGALUtils::createPolySetFromPolyhedron(P, *result_ps)) {
std::cerr << "Error converting to PolySet\n";
}
else {
std::stringstream ss;
ss << "out" << idx++ << ".stl";
exportFileByName(shared_ptr<const Geometry>(result_ps), OPENSCAD_STL, ss.str().c_str(), ss.str().c_str());
std::cout << "color([" << colors[idx%147][0] << "," << colors[idx%147][1] << "," << colors[idx%147][2] << "]) " << "import(\"" << ss.str() << "\");\n";
}
}
std::cerr << "Done." << std::endl;
}