-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
868 lines (731 loc) · 27 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
/****************************************************************************
FileName [ main.cpp ]
Synopsis [ Implementation of a Optimal Wiring Topology EM Router ]
Author [ Ting-Wei (Andy) Liu ]
Copyright [ Copyleft(c), NTUEE, NTU, Taiwan ]
****************************************************************************/
#include <iostream>
#include <fstream>
#include <iomanip>
#include <vector>
#include <string>
#include <cstdio>
#include <ctype.h>
#include <cassert>
#include <cstring>
#include <climits>
#include <cmath>
#include <map>
#include <float.h>
#include <utility>
#include <algorithm>
using namespace std;
/**********************************/
/* Declarations */
/**********************************/
class Edge;
class Node;
typedef pair<int, int> coordinate;
static string str_buf;
#define GREEDY
//define DEBUG
/****************************/
/* class Edge */
/****************************/
class Edge
{
public:
Edge() : _flow(INT_MAX), _original_edge(NULL) {}
// access functions
Node* get_node_u() const { return _node_u; }
Node* get_node_v() const { return _node_v; }
int get_wirelength() const { return _wirelength; }
int get_flow() const { return _flow; }
int get_capacity() const { return _capacity; }
Edge* get_original_edge() const { return _original_edge; }
// set functions
void set_node(Node* u, Node* v) { _node_u = u; _node_v = v; }
void set_node_u(Node* u) { _node_u = u; }
void set_node_v(Node* v) { _node_v = v; }
void set_wirelength(int w) { _wirelength = w; }
void set_flow(int f) { _flow = f; }
void set_capacity(int c) { _capacity = c; }
void set_original_edge(Edge* e) { _original_edge = e; }
// set all function
void set_edge(Node* u, Node* v, int w, int f, int c) {
_node_u = u;
_node_v = v;
_wirelength = w;
_flow = f;
_capacity = c; }
private:
Node* _node_u; // directed edge from u to v
Node* _node_v;
int _wirelength;
int _flow;
int _capacity;
Edge* _original_edge; // match residual edges to original flow edges
};
/****************************/
/* class Node */
/****************************/
class Node
{
public:
Node(coordinate c, int f) : _coordinate(c), _max_flow(f), _cur_flow(0) {}
// basic operations
void set_index(int i) { _idx = i; }
int get_index() const { return _idx; }
void set_max_flow(int f) { _max_flow = f; }
void set_cur_flow(int f) { _cur_flow = f; }
int get_max_flow() const { return _max_flow; }
int get_cur_flow() const { return _cur_flow; }
coordinate get_coordinate() const { return _coordinate; }
int check_flow_left() const { return _max_flow - _cur_flow; }
// fanout operations
bool fanout_empty() const { return _fanout.empty(); }
size_t get_fanout_size() const { return _fanout.size(); }
// access fanout
Edge* get_fanout(size_t idx) const { return _fanout.at(idx); }
void add_fanout(Edge* e) { _fanout.push_back(e); }
void clear_fanout() { _fanout.clear(); }
private:
// node information
int _idx;
coordinate _coordinate;
int _max_flow;
int _cur_flow;
// node connections
vector<Edge*> _fanout;
};
/*********************************/
/* class EM Router */
/*********************************/
class EM_Router
{
public:
EM_Router() {
_dummy_s = new Node(coordinate(0,0), 0);
_dummy_t = new Node(coordinate(0,0), 0);
_dummy_s_res = new Node(coordinate(0,0), 0);
_dummy_t_res = new Node(coordinate(0,0), 0);
_T = new Node(coordinate(0,0), 0);
_T->set_index(0);
}
// mian functions for flow net
int build_flow_network();
void connect_flow_network();
bool push_flow();
bool push_flow_greedy();
// main functions for residual net
void build_residual_network();
void connect_residual_network();
void disconnect_residual_network();
// neg cycle operations
vector<Edge*> find_neg_cycle();
void augment_graph_addT(Node* T);
void push_flow_neg_cycle(vector<Edge*>& neg_cycle);
void preprocess_node();
// utility functions
bool read_input_table (const string&);
void display_input (bool show_input = false) const;
void display_graph (bool show_graph = false) const;
int calculate_wire_area() const;
bool check_valid_cycle(vector<Edge*> neg_cycle) const;
bool check_valid_flow(int total_flow) const;
void save_output(const string& output_file) const;
private:
// flow network
int _n_source_and_sink;
vector< vector<int> > _input_table;
Node* _dummy_s;
Node* _dummy_t;
// residual network
Node* _dummy_s_res;
Node* _dummy_t_res;
Node* _T;
vector<Node*> _node_list;
int _total_nodes;
// helper functions
int calculate_wire_len(int x1, int x2, int y1, int y2) { return (abs(x1 - x2) + abs(y1 - y2)); }
int min_on_int(int int1, int int2) { if (int1 <= int2) return int1; else return int2; }
int is_in_vector_idx(int v, vector<int>& vec);
};
/*******************************/
/* class Compare */
/*******************************/
class Compare_Edge { public: bool operator() (Edge* e1, Edge* e2) { return (e1->get_wirelength() < e2->get_wirelength()); } };
class Compare_Vec {
public: bool operator() (vector<int> v1, vector<int> v2) {
if (v1.at(0) < v2.at(0)) return true;
if (v1.at(0) > v2.at(0)) return false;
if (v1.at(1) < v2.at(1)) return true;
if (v1.at(1) > v2.at(1)) return false;
if (v1.at(2) < v2.at(2)) return true;
if (v1.at(2) > v2.at(2)) return false;
if (v1.at(3) < v2.at(3)) return true;
if (v1.at(3) > v2.at(3)) return false;
if (v1.at(4) < v2.at(4)) return true;
if (v1.at(4) > v2.at(4)) return false;
return false;
}
};
/************************************************/
/* class EM Router main functions */
/************************************************/
int EM_Router::build_flow_network ()
{
int n_source = 0;
int n_sink = 0;
// build nodes
for (int i = 0; i < _input_table.size(); ++i) {
if (_input_table.at(i).at(2) > 0) {
// initiate node
coordinate xy(_input_table.at(i).at(0), _input_table.at(i).at(1));
Node* node_s = new Node(xy, abs(_input_table.at(i).at(2)));
// set edges
Edge* edge = new Edge();
edge->set_node(_dummy_s, node_s);
// connect to dummy node
_dummy_s->add_fanout(edge);
n_source += 1;
}
else {
// initiate node
coordinate xy(_input_table.at(i).at(0), _input_table.at(i).at(1));
Node* node_t = new Node(xy, abs(_input_table.at(i).at(2)));
// set edges
Edge* edge = new Edge();
edge->set_node(_dummy_t, node_t);
// connect to dummy node
_dummy_t->add_fanout(edge);
n_sink += 1;
}
}
// connect s and t nodes
connect_flow_network();
_total_nodes = n_source + n_sink + 1;
// calculate total possible for dummy nodes
int total_flow_s = 0;
int total_flow_t = 0;
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) { total_flow_s += _dummy_s->get_fanout(i)->get_node_v()->get_max_flow(); }
for (int i = 0; i < _dummy_t->get_fanout_size(); ++i) { total_flow_t += _dummy_t->get_fanout(i)->get_node_v()->get_max_flow(); }
_dummy_s->set_max_flow(total_flow_s);
_dummy_t->set_max_flow(total_flow_t);
#ifdef DEBUG
assert (total_flow_s == total_flow_t);
#endif
cout << "Number of source: " << n_source << endl;
cout << "Number of sink: " << n_sink << endl;
cout << "Complete building flow network with total flow: " << total_flow_s << endl;
return total_flow_s;
}
void EM_Router::connect_flow_network ()
{
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < _dummy_t->get_fanout_size(); ++j) {
// initiate
Node* node_t = _dummy_t->get_fanout(j)->get_node_v();
Edge* edge = new Edge();
// calculate wirelength
coordinate xy_s = node_s->get_coordinate();
coordinate xy_t = node_t->get_coordinate();
int len = calculate_wire_len(xy_s.first, xy_t.first, xy_s.second, xy_t.second);
// calculate capacity
int flow_s = node_s->get_max_flow();
int flow_t = node_t->get_max_flow();
int cap = min_on_int(flow_s, flow_t);
// set edges
edge->set_edge(node_s, node_t, len, INT_MAX, cap);
// connect
node_s->add_fanout(edge);
}
}
}
bool EM_Router::push_flow_greedy ()
{
bool pushable = false;
cout << "Pushing initial flow with greedy Method!" << endl;
// colllect all edges
vector<Edge*> edge_list;
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j)
edge_list.push_back(node_s->get_fanout(j));
}
std::sort(edge_list.begin(), edge_list.end(), Compare_Edge());
// greedy push: starting with smallest wire length
Node* node_s;
Node* node_t;
int flow_s;
int flow_t;
for (int i = 0; i < edge_list.size(); ++i) {
node_s = edge_list.at(i)->get_node_u();
node_t = edge_list.at(i)->get_node_v();
flow_s = node_s->check_flow_left();
if (flow_s > 0) {
flow_t = node_t->check_flow_left();
if (flow_t > 0) {
pushable = true;
int push_flow = min_on_int(flow_s, flow_t);
// push flow
node_s->set_cur_flow(node_s->get_cur_flow()+push_flow);
node_t->set_cur_flow(node_t->get_cur_flow()+push_flow);
edge_list.at(i)->set_flow(push_flow);
#ifdef DEBUG
assert(node_s->get_cur_flow() <= node_s->get_max_flow());
assert(node_t->get_cur_flow() <= node_t->get_max_flow());
#endif
}
}
}
return pushable;
}
bool EM_Router::push_flow ()
{
#ifdef GREEDY
if (_total_nodes > 100) return push_flow_greedy();
#endif
cout << "Pushing initial flow with normal Method." << endl;
bool pushable = false;
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
// node s
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j) {
Edge* edge = node_s->get_fanout(j);
int flow_s = node_s->check_flow_left();
if (flow_s > 0) {
// nove t
Node* node_t = edge->get_node_v();
// calculate flow
int flow_t = node_t->check_flow_left();
if (flow_t > 0) {
pushable = true;
int push_flow = min_on_int(flow_s, flow_t);
// push flow
node_s->set_cur_flow(node_s->get_cur_flow()+push_flow);
node_t->set_cur_flow(node_t->get_cur_flow()+push_flow);
edge->set_flow(push_flow);
#ifdef DEBUG
assert(node_s->get_cur_flow() <= node_s->get_max_flow());
assert(node_t->get_cur_flow() <= node_t->get_max_flow());
#endif
}
}
}
}
return pushable;
}
void EM_Router::build_residual_network ()
{
cout << "Building residual network, starting negative cycle removal..." << endl;
int idx = 1;
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
// get origninal node and assign idx
Node* node_o = _dummy_s->get_fanout(i)->get_node_v();
node_o->set_index(idx);
idx += 1;
// copy node
Node* node_s = new Node(*node_o);
node_s->clear_fanout();
// set edge
Edge* edge = new Edge();
edge->set_node(_dummy_s_res, node_s);
// connect to dummy node
_dummy_s_res->add_fanout(edge);
}
for (int i = 0; i < _dummy_t->get_fanout_size(); ++i) {
// get origninal node and assign idx
Node* node_o = _dummy_t->get_fanout(i)->get_node_v();
node_o->set_index(idx);
idx += 1;
// copy node
Node* node_t = new Node(*node_o);
node_t->clear_fanout();
// set edge
Edge* edge = new Edge();
edge->set_node(_dummy_t_res, node_t);
// connect to dummy node
_dummy_t_res->add_fanout(edge);
}
}
void EM_Router::connect_residual_network()
{
map<Edge*, Edge*> edge2edge; // map residual edge to original edge
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i){
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
Node* node_s_res = _dummy_s_res->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j) {
Edge* edge_o = node_s->get_fanout(j);
Node* node_t_res = _dummy_t_res->get_fanout(j)->get_node_v();
#ifdef DEBUG
assert (edge_o->get_wirelength() != INT_MAX);
#endif
// forward edge
if ((edge_o->get_flow() < edge_o->get_capacity()) || (edge_o->get_flow() == INT_MAX)) {
Edge* edge_f = new Edge();
edge_f->set_edge(node_s_res, node_t_res, edge_o->get_wirelength(), INT_MAX, edge_o->get_capacity()-edge_o->get_flow());
edge_f->set_original_edge(edge_o);
node_s_res->add_fanout(edge_f);
}
// backward edge
if ((edge_o->get_flow() > 0) && (edge_o->get_flow() != INT_MAX)) {
Edge* edge_b = new Edge();
edge_b->set_edge(node_t_res, node_s_res, -edge_o->get_wirelength(), INT_MAX, -edge_o->get_flow());
edge_b->set_original_edge(edge_o);
node_t_res->add_fanout(edge_b);
}
}
}
}
void EM_Router::disconnect_residual_network()
{
for (int i = 0; i < _dummy_s_res->get_fanout_size(); ++i){
Node* node_s = _dummy_s_res->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j){
delete node_s->get_fanout(j); // delete edge
}
node_s->clear_fanout(); // delete fanout
}
for (int i = 0; i < _dummy_t_res->get_fanout_size(); ++i){
Node* node_t = _dummy_t_res->get_fanout(i)->get_node_v();
for (int j = 0; j < node_t->get_fanout_size(); ++j){
delete node_t->get_fanout(j); // delete edge
}
node_t->clear_fanout(); // delete fanout
}
}
/******************************************************/
/* class EM Router neg cycle operations */
/******************************************************/
vector<Edge*> EM_Router::find_neg_cycle()
{
// implementation of the Bellman-Ford Dynamic Programming algorithm
// Augment Graph, add a new node T, connect all nodes to T
augment_graph_addT(_T);
// construct memories and trace backs
int* memory_opt = new int[_total_nodes];
int* memory_old = new int[_total_nodes];
int* trace_node = new int[_total_nodes];
Edge** trace_edge = new Edge*[_total_nodes];
for(int i = 0; i < _total_nodes; ++i) {
memory_opt[i] = INT_MAX-77777;
memory_old[i] = INT_MAX-77777;
trace_node[i] = 0;
trace_edge[i] = NULL;
}
memory_old[0] = 0;
int* holder;
int edge_cost;
int idx;
for (int i = 1; i < _total_nodes; ++i){
for (int j = 0; j < _total_nodes; ++j){
// find min cost over all edges of node j
memory_opt[j] = memory_old[j];
for (int k = 0; k < _node_list.at(j)->get_fanout_size(); ++k) {
idx = _node_list.at(j)->get_fanout(k)->get_node_v()->get_index();
edge_cost = _node_list.at(j)->get_fanout(k)->get_wirelength() + memory_old[idx];
if (edge_cost < memory_opt[j]) {
// record optimal
memory_opt[j] = edge_cost;
// record trace back
trace_node[j] = idx;
trace_edge[j] = _node_list.at(j)->get_fanout(k);
}
}
}
// swap
holder = memory_old;
memory_old = memory_opt;
memory_opt = holder;
}
// check if odd cycle exist
int neg_cycle_idx = INT_MAX;
for (int i = 0; i < _total_nodes; ++i)
if (memory_opt[i] != memory_old[i]) {
neg_cycle_idx = i;
break;
}
vector<Edge*> neg_cycle_edge;
vector<int> neg_cycle_node;
// if no neg cycle
if (neg_cycle_idx == INT_MAX){
return neg_cycle_edge;
}
// if neg cycle
for (int i = _total_nodes-1; i >= 0; --i){
neg_cycle_node.push_back(neg_cycle_idx);
neg_cycle_edge.push_back(trace_edge[neg_cycle_idx]);
neg_cycle_idx = trace_node[neg_cycle_idx];
idx = is_in_vector_idx(neg_cycle_idx, neg_cycle_node);
if (idx != INT_MAX) break;
}
// truncate the front
neg_cycle_edge.erase(neg_cycle_edge.begin(),neg_cycle_edge.begin()+idx);
delete[] memory_opt;
delete[] memory_old;
delete[] trace_node;
delete[] trace_edge;
return neg_cycle_edge;
}
void EM_Router::push_flow_neg_cycle(vector<Edge*>& neg_cycle)
{
int push_flow = INT_MAX;
for (int i = 0; i < neg_cycle.size(); ++i){
if (abs(neg_cycle.at(i)->get_capacity()) < push_flow)
push_flow = abs(neg_cycle.at(i)->get_capacity());
}
Edge* edge_o = NULL;
for (int i = 0; i < neg_cycle.size(); ++i){
edge_o = neg_cycle.at(i)->get_original_edge();
if (edge_o->get_flow() == INT_MAX) edge_o->set_flow(0); // initial flow if unset
if (neg_cycle.at(i)->get_wirelength() < 0) // a backward edge
edge_o->set_flow(edge_o->get_flow()-push_flow);
else
edge_o->set_flow(edge_o->get_flow()+push_flow);
#ifdef DEBUG
assert(edge_o->get_flow() <= edge_o->get_capacity());
assert(edge_o->get_flow() >= 0);
#endif
}
}
/**************************************************/
/* class EM Router helper functions */
/**************************************************/
void EM_Router::augment_graph_addT(Node* T)
{
for (int i = 0; i < _dummy_s_res->get_fanout_size(); ++i){
Node* node_s = _dummy_s_res->get_fanout(i)->get_node_v();
Edge* edge_T = new Edge();
edge_T->set_edge(node_s, T, 0, INT_MAX, 0); // 0 cost edge
node_s->add_fanout(edge_T);
}
for (int i = 0; i < _dummy_t_res->get_fanout_size(); ++i){
Node* node_t = _dummy_t_res->get_fanout(i)->get_node_v();
Edge* edge_T = new Edge();
edge_T->set_edge(node_t, T, 0, INT_MAX, 0); // 0 cost edge
node_t->add_fanout(edge_T);
}
}
void EM_Router::preprocess_node()
{
// construct node list
_node_list.push_back(_T);
for (int i = 0; i < _dummy_s_res->get_fanout_size(); ++i)
_node_list.push_back(_dummy_s_res->get_fanout(i)->get_node_v());
for (int i = 0; i < _dummy_t_res->get_fanout_size(); ++i)
_node_list.push_back(_dummy_t_res->get_fanout(i)->get_node_v());
#ifdef DEBUG
assert(_total_nodes == _node_list.size());
#endif
}
int EM_Router::is_in_vector_idx(int v, vector<int>& vec)
{
for (int i = 0; i < vec.size(); ++i)
if (vec.at(i) == v)
return i;
return INT_MAX;
}
/***************************************************/
/* class EM Router utility functions */
/***************************************************/
bool EM_Router::read_input_table (const string& input_file)
{
// opening file
ifstream ifs(input_file.c_str());
if (!ifs) {
cerr << "Cannot open file \"" << input_file << "\"!" << endl;
return false; }
// get first line
getline(ifs, str_buf, '\n');
_n_source_and_sink = atoi(str_buf.c_str());
// get middle line
for (int i=0; i<_n_source_and_sink; ++i) {
getline(ifs, str_buf, '\n');
int begin = 0;
int end = 1;
vector<int> line;
// parse each token
for (string::iterator it=str_buf.begin(); it!=str_buf.end(); ++it) {
if ((*it == ' ') || (*it == '\t')) {
line.push_back(atoi(str_buf.substr(begin, end - begin).c_str()));
begin = end;
}
end += 1;
}
// get the last token
line.push_back(atoi(str_buf.substr(begin, end - begin).c_str()));
_input_table.push_back(line);
}
return true;
}
void EM_Router::display_input(bool show_input) const
{
if (show_input == true) {
for (int i = 0; i < _input_table.size(); ++i) {
for (int j = 0; j < _input_table.at(i).size(); ++j) {
cout << _input_table.at(i).at(j) << ' ';
}
cout << endl;
}
}
#ifdef DEBUG
assert(_n_source_and_sink == _input_table.size());
#endif
cout << "Number of sources + sinks: " << _n_source_and_sink << endl;
}
void EM_Router::display_graph(bool show_graph) const
{
if (show_graph == true) {
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i){
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j) {
Edge* edge = node_s->get_fanout(j);
cout << "S: " << i+1 << " T: " << j+1 << " Flow: " << edge->get_flow() << " / Capacity: " << edge->get_capacity() << endl;
}
}
}
}
int EM_Router::calculate_wire_area() const
{
int area = 0;
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j) {
if (node_s->get_fanout(j)->get_flow() != INT_MAX)
area += node_s->get_fanout(j)->get_wirelength() * node_s->get_fanout(j)->get_flow();
}
}
cout << "Final Area: " << area << endl;
return area;
}
bool EM_Router::check_valid_cycle(vector<Edge*> neg_cycle) const
{
if (neg_cycle.size() == 0) return true;
int sum = 0;
for (int i = 0; i < neg_cycle.size(); ++i) {
sum += neg_cycle.at(i)->get_wirelength();
}
if (sum < 0) return true;
else return false;
}
bool EM_Router::check_valid_flow(int total_flow) const
{
// fill in flow table
int idx_s;
int idx_t;
vector< vector<int> > flow = vector< vector<int> >(_dummy_s->get_fanout_size(), vector<int>(_dummy_t->get_fanout_size(), 0));
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j) {
if (node_s->get_fanout(j)->get_flow() != INT_MAX) {
idx_s = node_s->get_index() - 1;
idx_t = node_s->get_fanout(j)->get_node_v()->get_index() - _dummy_s->get_fanout_size() - 1;
flow.at(idx_s).at(idx_t) = node_s->get_fanout(j)->get_flow();
}
}
}
int idx = 0;
int sum_s = 0;
int sum_t = 0;
// check the sum of flow of source
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
for (int j = 0; j < _dummy_t->get_fanout_size(); ++j) {
sum_s += flow.at(i).at(j);
}
idx += 1;
if (sum_s != _node_list.at(idx)->get_max_flow()) return false;
sum_s = 0;
}
// check the sum of flow of sink
for (int i = 0; i < _dummy_t->get_fanout_size(); ++i) {
for (int j = 0; j < _dummy_s->get_fanout_size(); ++j) {
sum_t += flow.at(j).at(i);
}
idx += 1;
if (sum_t != _node_list.at(idx)->get_max_flow()) return false;
sum_t = 0;
}
return true;
}
void EM_Router::save_output(const string& output_file) const {
ofstream file;
file.open (output_file.c_str());
int wire_area = calculate_wire_area();
file << wire_area << '\n';
vector<vector<int> > result;
for (int i = 0; i < _dummy_s->get_fanout_size(); ++i) {
Node* node_s = _dummy_s->get_fanout(i)->get_node_v();
for (int j = 0; j < node_s->get_fanout_size(); ++j) {
Edge* edge = node_s->get_fanout(j);
if ((edge->get_flow() != INT_MAX) && (edge->get_flow() > 0)) {
Node* node_u = edge->get_node_u();
Node* node_v = edge->get_node_v();
vector<int> row = vector<int>(5, INT_MAX);
row.at(0) = node_u->get_coordinate().first;
row.at(1) = node_u->get_coordinate().second;
row.at(2) = node_v->get_coordinate().first;
row.at(3) = node_v->get_coordinate().second;
row.at(4) = edge->get_flow();
result.push_back(row);
}
}
}
std::sort(result.begin(), result.end(), Compare_Vec());
// output
for (int i = 0; i < result.size(); ++i) {
for (int j = 0; j < result.at(0).size(); ++j) {
if (j == result.at(0).size() - 1) file << result.at(i).at(j);
else file << result.at(i).at(j) << ' ';
}
file << '\n';
}
file.close();
cout << "Result successfully saved to: " << output_file << endl;
}
/**********************************/
/* Main Function */
/**********************************/
int main(int argc, char** argv)
{
// Settings
bool show_input = false;
bool show_graph = false;
if (argc != 3) { // argument count
cout << "Illegal number of arguments! Terminating program!" << endl;
return 1;
}
EM_Router* EMR = new EM_Router();
EMR->read_input_table(argv[1]);
EMR->display_input(show_input);
EMR->display_graph(show_graph);
// flow network
int total_flow = EMR->build_flow_network();
// push flow
EMR->push_flow();
EMR->build_residual_network();
EMR->preprocess_node();
int iteration = 0;
while (true) {
++iteration;
cout << "Iteration: " << iteration << endl;
// connect residual
EMR->connect_residual_network();
// find and push neg cycle
vector<Edge*> neg_cycle = EMR->find_neg_cycle();
#ifdef DEBUG
assert(EMR->check_valid_cycle(neg_cycle));
#endif
if (neg_cycle.size() > 0)
EMR->push_flow_neg_cycle(neg_cycle);
// disconnect residual
EMR->disconnect_residual_network();
if (neg_cycle.size() == 0) break;
}
#ifdef DEBUG
assert(EMR->check_valid_flow(total_flow));
#endif
EMR->save_output(argv[2]);
return 0;
}