-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinteract_full.py
294 lines (268 loc) · 16.1 KB
/
interact_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from utils.utils import load_model
from prompts.generic_prompt import load_prefix, generate_response_interactive, select_prompt_interactive
from prompts.generic_prompt_parser import load_prefix as load_prefix_parse
from prompts.generic_prompt_parser import generate_response_DKG_interactive
from prompts.persona_chat import convert_sample_to_shot_persona
from prompts.persona_chat_memory import convert_sample_to_shot_msc, convert_sample_to_shot_msc_interact
from prompts.emphatetic_dialogue import convert_sample_to_shot_ed
from prompts.daily_dialogue import convert_sample_to_shot_DD_prefix, convert_sample_to_shot_DD_inference
from prompts.persona_parser import convert_sample_to_shot_msc as convert_sample_to_shot_msc_parse
from prompts.wizard_of_wikipedia import convert_sample_to_shot_wow, convert_sample_to_shot_wow_interact
from prompts.wizard_of_wikipedia_parse import convert_sample_to_shot_wow as convert_sample_to_shot_wow_parse
from prompts.wizard_of_internet import convert_sample_to_shot_wit, convert_sample_to_shot_wit_interact
from prompts.wizard_of_internet_parser import convert_sample_to_shot_wit as convert_sample_to_shot_wit_parse
from prompts.dialKG import convert_sample_to_shot_dialKG, convert_sample_to_shot_dialKG_interact
from prompts.dialKG_parser import convert_sample_to_shot_dialKG as convert_sample_to_shot_dialKG_parse
from prompts.skill_selector import convert_sample_to_shot_selector
from utils.wit_parlai_retriever import SearchEngineRetriever
from py2neo import Graph
import wikipedia
import random
import torch
import pprint
from nltk.tokenize import sent_tokenize
pp = pprint.PrettyPrinter(indent=4)
args = type('', (), {})()
args.multigpu = False
device = 1
safety_level = 6
shot_selector = 6
sample_skill = False
## Check the retriever forlder for more info
ks = SearchEngineRetriever(search_server="ADDRESS")
kg = Graph("address", auth=("USR", "PWD"))
## To use GPT-Jumbo (178B) set this to true and input your api-key
## Visit https://studio.ai21.com/account for more info
## AI21 provides 10K tokens per day, so you can try only for few turns
api = False
api_key = ''
model_checkpoint = "EleutherAI/gpt-j-6B"
model, tokenizer, max_seq = load_model(args,model_checkpoint,device)
## This is the config dictionary used to select the template converter
## Remove dialKG if you don't have the Graph Neo4j
mapper = {
"persona": {"shot_converter":convert_sample_to_shot_persona,
"shot_converter_inference": convert_sample_to_shot_persona,
"file_data":"data/persona/","with_knowledge":None,
"shots":{1024:[0,1,2],2048:[0,1,2,3,4,5]},"max_shot":{1024:2,2048:3},
"shot_separator":"\n\n",
"meta_type":"all","gen_len":50,"max_number_turns":5},
"msc": {"shot_converter":convert_sample_to_shot_msc,
"shot_converter_inference": convert_sample_to_shot_msc_interact,
"file_data":"data/msc/session-2-","with_knowledge":None,
"shots":{1024:[0,1],2048:[0,1,3]},"max_shot":{1024:1,2048:3},
"shot_separator":"\n\n",
"meta_type":"all","gen_len":50,"max_number_turns":3},
"ed": {"shot_converter":convert_sample_to_shot_ed,
"shot_converter_inference": convert_sample_to_shot_ed,
"file_data":"data/ed/","with_knowledge":None,
"shots":{1024:[0,1,7],2048:[0,1,17]},"max_shot":{1024:7,2048:17},
"shot_separator":"\n\n",
"meta_type":"none","gen_len":50,"max_number_turns":5},
"safe": {"shot_converter":convert_sample_to_shot_persona,
"shot_converter_inference": convert_sample_to_shot_persona,
"file_data":"data/safety_layers/safety_safe_adv_","with_knowledge":None,
"shots":{1024:[0,1,5],2048:[0,1,10]},"max_shot":{1024:5,2048:10},
"shot_separator":"\n\n",
"meta_type":"none","gen_len":50,"max_number_turns":5},
"DD": {"shot_converter":convert_sample_to_shot_DD_prefix,
"shot_converter_inference": convert_sample_to_shot_DD_inference,
"file_data":"data/dailydialog/","with_knowledge":False,
"shots":{1024:[0,1,2],2048:[0,1,6]},"max_shot":{1024:2,2048:6},
"shot_separator":"\n\n",
"meta_type":"all_turns","gen_len":50,"max_number_turns":5},
"wow": {"shot_converter":convert_sample_to_shot_wow,
"shot_converter_inference": convert_sample_to_shot_wow_interact,
"file_data":"data/wow/","with_knowledge":True,
"shots":{1024:[0,1,2],2048:[4,3,2,1,0]},"max_shot":{1024:1,2048:3},
"shot_separator":"\n\n",
"meta_type":"incremental","gen_len":60,"max_number_turns":5},
"wit": {"shot_converter":convert_sample_to_shot_wit,
"shot_converter_inference": convert_sample_to_shot_wit_interact,
"file_data":"data/wit/","with_knowledge":True,
"shots":{1024:[0,1],2048:[0,1,2,3]},"max_shot":{1024:1,2048:3},
"shot_separator":"\n\n",
"meta_type":"incremental","gen_len":60,"max_number_turns":4},
"dialKG": {"shot_converter":convert_sample_to_shot_dialKG,
"shot_converter_inference": convert_sample_to_shot_dialKG_interact,
"file_data":"data/dialKG/","with_knowledge":True,
"shots":{1024:[0,1,3],2048:[0,1,9]},"max_shot":{1024:3,2048:9},
"shot_separator":"\n\n",
"meta_type":"incremental","gen_len":50,"max_number_turns":4},
"wow-parse": {"shot_converter":convert_sample_to_shot_wow_parse,
"file_data":"data/wow/parse-","level":"dialogue", "retriever":"wiki",
"shots":{1024:[0, 1, 5],2048:[0, 1, 5, 10]},"max_shot":{1024:5,2048:10},
"shot_separator":"\n\n", "meta_type":"last_turn","gen_len":50,"max_number_turns":2},
"wit-parse": {"shot_converter":convert_sample_to_shot_wit_parse,
"file_data":"data/wit/","level":"dialogue","max_shot":{1024:1,2048:4},
"shots":{1024:[0,1],2048:[0, 1, 2, 3, 4]},"shot_separator":"\n\n", "retriever":"internet",
"meta_type":"query","gen_len":50,"max_number_turns":2},
"dialKG-parse": {"shot_converter":convert_sample_to_shot_dialKG_parse,
"file_data":"data/dialKG/","level":"dialogue", "max_shot":{1024:3,2048:9},
"shots":{1024:[0,1,2,3],2048:[0, 1, 5, 9]},"shot_separator":"\n\n", "retriever":"graph",
"meta_type":"incremental","gen_len":50,"max_number_turns":5},
"msc-parse": {"shot_converter":convert_sample_to_shot_msc_parse, "max_shot":{1024:1,2048:2},
"file_data":"data/msc/parse-session-1-","level":"dialogue", "retriever":"none",
"shots":{1024:[0,1],2048:[0, 1, 2]},"shot_separator":"\n\n",
"meta_type":"incremental","gen_len":50,"max_number_turns":3},
}
## This is the config dictionary used to select the template converter
mapper_safety = {
"unsa_topic": {"file_data":"data/safety_layers/safety_topic.json","with_knowledge":None,
"shots":{1024:[0,1,2],2048:[0,1,2,3,4,5]},"max_shot":{1024:2,2048:3},
"shot_separator":"\n\n",
"meta_type":"all","gen_len":50,"max_number_turns":2},
"unsa_nonadv": {"file_data":"data/safety_layers/safety_nonadv.json","with_knowledge":None,
"shots":{1024:[0,1,2],2048:[0,1,2,3,4,5]},"max_shot":{1024:2,2048:3},
"shot_separator":"\n\n",
"meta_type":"all","gen_len":50,"max_number_turns":2},
## THIS MAKE IT VERY VERY SAFE
# "unsa_adv": {"file_data":"data/safety_layers/safety_adv.json","with_knowledge":None,
# "shots":{1024:[0,1,2],2048:[0,1,2,3,4,5]},"max_shot":{1024:2,2048:3},
# "shot_separator":"\n\n",
# "meta_type":"all","gen_len":50,"max_number_turns":2},
}
### LOAD PROMPTS
available_datasets = mapper.keys()
prompt_dict = {}
prompt_parse = {}
prompt_skill_selector = {}
for d in available_datasets:
if "parse" in d:
prompt_parse[d] = load_prefix_parse(tokenizer=tokenizer, shots_value=mapper[d]["shots"][max_seq],
shot_converter=mapper[d]["shot_converter"],
file_shot=mapper[d]["file_data"]+"valid.json",
name_dataset=d, level=mapper[d]["level"],
shot_separator=mapper[d]["shot_separator"],sample_times=1)[0]
else:
if "safe" != d:
prompt_skill_selector[d] = load_prefix(tokenizer=tokenizer, shots_value=[shot_selector],
shot_converter=convert_sample_to_shot_selector,
file_shot= mapper[d]["file_data"]+"train.json" if "smd" in d else mapper[d]["file_data"]+"valid.json",
name_dataset=d, with_knowledge=None,
shot_separator=mapper[d]["shot_separator"],sample_times=1)[0]
prompt_dict[d] = load_prefix(tokenizer=tokenizer, shots_value=mapper[d]["shots"][max_seq],
shot_converter=mapper[d]["shot_converter"],
file_shot=mapper[d]["file_data"]+"valid.json",
name_dataset=d, with_knowledge=mapper[d]["with_knowledge"],
shot_separator=mapper[d]["shot_separator"],sample_times=1)[0]
## add safety prompts
for d in mapper_safety.keys():
prompt_skill_selector[d] = load_prefix(tokenizer=tokenizer, shots_value=[safety_level],
shot_converter=convert_sample_to_shot_selector,
file_shot= mapper_safety[d]["file_data"],
name_dataset=d, with_knowledge=None,
shot_separator=mapper_safety[d]["shot_separator"],sample_times=1)[0]
def run_parsers(args, model, tokenizer, device, max_seq, dialogue, skill, prefix_dict):
if skill not in ["msc", "wow", "wit","dialKG"]: return dialogue
### parse
d_p = f"{skill}-parse"
print(f"Parse with {d_p}")
prefix = prefix_dict[d_p].get(mapper[d_p]["max_shot"][max_seq])
if skill == "dialKG":
### THIS REQUIRE A NEO4J DB UP and RUNNING
query = generate_response_DKG_interactive(model, tokenizer, shot_converter=mapper[d_p]["shot_converter"],
dialogue=dialogue, prefix=prefix,
device=device,
level=mapper[d_p]["level"], gen_len=50,
beam=1, max_seq=max_seq, eos_token_id=198,
do_sample=False, multigpu=False,
verbose=False, KG=kg)
else:
query = generate_response_interactive(model, tokenizer, shot_converter=mapper[d_p]["shot_converter"],
dialogue=dialogue, prefix=prefix,
device=device, with_knowledge=None,
meta_type=None, gen_len=50,
beam=1, max_seq=max_seq, eos_token_id=198,
do_sample=False, multigpu=False, api=api, api_key=api_key)
print(f"Query: {query}")
if query.lower() == "none": return dialogue
if skill == "wow" and query not in dialogue["query_mem"]:
dialogue["query_mem"].append(query)
## Try first with Wiki
try:
retrieve_K = wikipedia.summary(query, sentences=1)
except:
## Then try with the Internet
try:
page = ks.retrieve(queries=[query], num_ret=1)[0]
retrieve_K = sent_tokenize(page[0]['content'])[1]
except:
retrieve_K = "None"
dialogue["KB_wiki"][-1] = [retrieve_K]
elif skill == "wit" and query not in dialogue["query_mem"]:
dialogue["query_mem"].append(query)
try:
page = ks.retrieve(queries=[query], num_ret=1)[0]
retrieve_K = sent_tokenize(page[0]['content'])[1]
except:
retrieve_K = "None"
dialogue["KB_internet"][-1] = [retrieve_K]
dialogue["query"][-1] = [query]
elif skill == "dialKG":
dialogue["KG"][-1] = [query]
elif skill == "msc":
dialogue["user"].append(query)
dialogue["user_memory"][-1] = [query]
return dialogue
max_number_turns = 5
dialogue = {"dialogue":[],"meta":[],"user":[],
"assistant":[],"user_memory":[],
"KG":[], "KB_internet": [],
"KB_wiki": [], "query":[],
"query_mem":[]}
## This meta information is the persona of the FSB
dialogue["meta"] = dialogue["assistant"] = [
"i am the smartest chat-bot around .",
"my name is FSB . ",
"i love chatting with people .",
"my creator is Andrea"
]
t = 10
while t>0:
t -= 1
user_utt = input(">>> ")
dialogue["dialogue"].append([user_utt,""])
## run the skill selector
skill = select_prompt_interactive(model, tokenizer,
shot_converter=convert_sample_to_shot_selector,
dialogue=dialogue, prompt_dict=prompt_skill_selector,
device=device, max_seq=max_seq, max_shot=shot_selector, sample=sample_skill)
dialogue["user_memory"].append([])
dialogue["KB_wiki"].append([])
dialogue["KB_internet"].append([])
dialogue["query"].append([])
dialogue["KG"].append([])
if "unsa" in skill:
skill = "safe"
## generate response based on skills
prefix = prompt_dict[skill].get(mapper[skill]["max_shot"][max_seq])
response = generate_response_interactive(model, tokenizer, shot_converter=mapper[skill]["shot_converter_inference"],
dialogue=dialogue, prefix=prefix,
device=device, with_knowledge=mapper[skill]["with_knowledge"],
meta_type=mapper[skill]["meta_type"], gen_len=50,
beam=1, max_seq=max_seq, eos_token_id=198,
do_sample=True, multigpu=False, api=api, api_key=api_key)
else:
## parse user dialogue history ==> msc-parse
dialogue = run_parsers(args, model, tokenizer, device=device, max_seq=max_seq,
dialogue=dialogue, skill=skill,
prefix_dict=prompt_parse)
## generate response based on skills
prefix = prompt_dict[skill].get(mapper[skill]["max_shot"][max_seq])
response = generate_response_interactive(model, tokenizer, shot_converter=mapper[skill]["shot_converter_inference"],
dialogue=dialogue, prefix=prefix,
device=device, with_knowledge=mapper[skill]["with_knowledge"],
meta_type=mapper[skill]["meta_type"], gen_len=50,
beam=1, max_seq=max_seq, eos_token_id=198,
do_sample=True, multigpu=False, api=api, api_key=api_key)
print(f"FSB ({skill}) >>> {response}")
dialogue["dialogue"][-1][1] = response
dialogue["dialogue"] = dialogue["dialogue"][-max_number_turns:]
dialogue["user_memory"] = dialogue["user_memory"][-max_number_turns:]
dialogue["KB_wiki"] = dialogue["KB_wiki"][-max_number_turns:]
dialogue["KB_internet"] = dialogue["KB_internet"][-max_number_turns:]
dialogue["query"] = dialogue["query"][-max_number_turns:]
dialogue["KG"] = dialogue["KG"][-max_number_turns:]
print("\n\nThis is the conversation history with its meta-data!\n\n")
print(pp.pprint(dialogue))