-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfeqa.py
221 lines (176 loc) · 8.42 KB
/
feqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pickle
import nltk
import spacy
import benepar
import torch
import json
import os
import subprocess
import numpy as np
from tempfile import TemporaryDirectory
from fairseq.models.bart import BARTModel
from nltk import sent_tokenize,word_tokenize
from nltk.corpus import stopwords
from nltk.tree import Tree
from nltk.tree import ParentedTree
from benepar.spacy_plugin import BeneparComponent
from collections import defaultdict, Counter
from tqdm import tqdm
from itertools import groupby
class FEQA(object):
def __init__(self, squad_dir='metric/qa_models/squad1.0', bart_qa_dir='metric/bart_qg/', use_gpu=False):
self.qg_model = BARTModel.from_pretrained(
bart_qa_dir,
checkpoint_file = 'checkpoint_best.pt'
)
if use_gpu:
self.qg_model.cuda()
self.qg_model.half()
self.qg_model.eval()
self.batch_size = 64
self.beam_size = 1
self.max_length = 100
self.nlp = spacy.load('en_core_web_sm')
self.parser = benepar.Parser("benepar_en2")
self.stop_words = set(stopwords.words('english'))
self.squad_cmd = [f'CUDA_VISIBLE_DEVICES=7 python {squad_dir}/run_squad.py',
'--model_type bert',
f'--model_name_or_path {squad_dir}',
'--do_eval',
'--overwrite_cache',
'--do_lower_case',
'--predict_file {}',
'--per_gpu_eval_batch_size 32',
'--max_seq_length 384',
'--doc_stride 128',
'--output_dir {}']
self.squad_cmd = ' '.join(self.squad_cmd)
def _get_entities(self, output_summary):
entities = [X.text for X in self.nlp(output_summary).ents]
return entities
def _get_masked_phrases(self, output_summary, phrase_types=["NP"]):
n = 10
groups = (list(values) for _, values in groupby(output_summary))
output_summary = "".join("".join(v) for v in groups if len(v) < n)
masked_phrases = []
if output_summary== "" or len(output_summary.split(" "))>25: return []
parse_tree = self.parser.parse(output_summary)
for subtree in parse_tree.subtrees():
phrases_list = [(subtree_.leaves(), subtree_.label()) for subtree_ in subtree if type(subtree_) == Tree and subtree_.label() in phrase_types]
for phrase_tuple in phrases_list:
phrase = phrase_tuple[0]
phrase_type = phrase_tuple[1]
phrase_text = " ".join(phrase)
if len(phrase) > 0 and phrase_text not in self.stop_words:
masked_phrases.append(phrase_text)
return masked_phrases
def _generate_questions(self, summaries, entities=True, phrase_types=["NP"]):
doc_ids = []
qa_masks = []
tokenized_phrases = []
for id_, summary in tqdm(enumerate(summaries),total=len(summaries)):
summary = summary.strip()
all_masked_phrases = []
if entities:
all_masked_phrases.extend(self._get_entities(summary))
all_masked_phrases.extend(self._get_masked_phrases(summary,phrase_types))
all_masked_phrases = list(set(all_masked_phrases))
for i, masked_phrase in enumerate(all_masked_phrases):
tokenized_summary = " ".join(nltk.word_tokenize(summary.lower()))
tokenized_phrase = " ".join(nltk.word_tokenize(masked_phrase.lower()))
qa_masks.append(tokenized_summary + " [SEP] " + tokenized_phrase)
doc_ids.append(str(id_))
tokenized_phrases.append(tokenized_phrase)
questions = []
for i in tqdm(range(0, len(qa_masks), self.batch_size)):
batch = qa_masks[i:i + self.batch_size]
hypotheses = self.qg_model.sample(batch, beam=self.beam_size, lenpen=1.0, max_len_b=self.max_length, min_len=1, no_repeat_ngram_size=3)
questions.extend(hypotheses)
return doc_ids, questions, tokenized_phrases
def _convert_to_squad_format(self, gold_answers, questions, doc_ids, documents):
squad_format = {"data":[]}
id_questions=defaultdict(list)
id_gold_answers=defaultdict(str)
for idx in range(0,len(doc_ids)):
id_questions[doc_ids[idx].strip()].append((questions[idx], gold_answers[idx]))
for idx in id_questions:
paragraphs = []
context = documents[int(idx)].strip()
title = "doc_" + str(idx)
questions_list_input=[]
for q_id, question in enumerate(id_questions[idx]):
gold_answer = question[1]
question_text = question[0]
answers_input = [{"text": gold_answer, "answer_start": 0}]
questions_input = {
"question": question_text,
"answers": answers_input,
"id": str(idx).strip() + "-" + str(q_id)
}
questions_list_input.append(questions_input)
id_gold_answers[questions_input["id"]] = gold_answer
paragraphs.append({"context":" ".join(nltk.word_tokenize(context)).lower(),"qas":questions_list_input})
squad_format["data"].append({"title":title,"paragraphs":paragraphs})
squad_format["version"] = "1.1"
return id_gold_answers, squad_format
def _run_squad(self, squad_input):
with TemporaryDirectory() as tmpdir:
squad_input_file = os.path.join(tmpdir, 'squad_input.json')
with open(squad_input_file, 'w') as fout:
json.dump(squad_input, fout)
cmd = self.squad_cmd.format(squad_input_file, tmpdir)
ret = subprocess.check_output(cmd, shell=True)
with open(os.path.join(tmpdir, 'predictions_.json')) as fin:
squad_output = json.load(fin)
return squad_output
def _compute_f1(self, a_gold, a_pred):
gold_toks = nltk.word_tokenize(a_gold)
pred_toks = nltk.word_tokenize(a_pred)
common = Counter(gold_toks) & Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def _compute_f1_list(self, a_gold_list, a_pred_list):
f1_list=[]
for a_gold,a_pred in zip(a_gold_list, a_pred_list):
f1_list.append(self._compute_f1(a_gold,a_pred))
return np.mean(f1_list)
def compute_score(self, documents, summaries, aggregate=False):
#generate questions from summaries
print("Generating questions...")
doc_ids, questions, gold_answers = self._generate_questions(summaries)
print("Getting answers...")
#run qa system
gold_answers_dict, squad_format = self._convert_to_squad_format(gold_answers, questions, doc_ids, documents)
predictions_dict = self._run_squad(squad_format)
doc_questions=defaultdict(dict)
print("Computing metrics...")
for qa_id in gold_answers_dict:
doc_id, question_id=qa_id.split("-")
prediction = predictions_dict[qa_id]
if doc_id in doc_questions:
doc_questions[doc_id]["preds"].append(prediction)
doc_questions[doc_id]["gold"].append(gold_answers_dict[qa_id])
else:
doc_questions[doc_id]={"preds":[prediction],"gold":[gold_answers_dict[qa_id]]}
doc_f1 = defaultdict(float)
for idx in range(0,len(documents)):
idx=str(idx)
try:
f1 = self._compute_f1_list(doc_questions[idx]["gold"],doc_questions[idx]["preds"])
doc_f1[idx] = f1
except:
doc_f1[idx] = 0
for id_, summary in enumerate(summaries):
if str(id_) not in doc_f1:
doc_f1[str(id_)] = 0
if aggregate:
return np.mean(list(doc_f1.values()))
else:
return [doc_f1[k] for k in sorted(doc_f1.keys())]