-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmpyloess.py
808 lines (765 loc) · 32.7 KB
/
mpyloess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
# pylint: disable-msg=E1101
"""
Wrapper to lowess, loess and stl routines, with support for masked arrays.
LOWESS:
Initial Fortran code available at:
http://netlib.bell-labs.com/netlib/go/lowess.f.gz
initial author: W. S. Cleveland, 1979.
Simple to double precision conversion of the Fortran code by Pierre
Gerard-Marchant, 2007/03.
STL:
Initial Fortran code available at:
http://netlib.bell-labs.com/netlib/a/stl.gz
Initial Authors: R. B. Cleveland, W. S. Cleveland, J. E. McRae, and
I. Terpenning, 1990.
Simple-to-double precision conversion of the Fortran code by Pierre
Gerard-Marchant, 2007/03.
LOESS:
Initial C/Fortran package avialable at
http://netlib.bell-labs.com/netlib/a/dloess.gz
Initial authors: W. S. Cleveland, E. Grosse and Shyu
Adaptation to Pyrex/Python by Pierre Gerard-Marchant, 2007/03
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date$
:version: $Id$
"""
__author__ = "Pierre GF Gerard-Marchant ($Author$)"
__version__ = '1.0'
__revision__ = "$Revision$"
__date__ = '$Date$'
import numpy
from numpy import array, empty, float_, fromiter, logical_not, recarray
#import numpy.core.numeric as numeric
#from numpy.core.records import recarray
#narray = numeric.array
#nempty = numeric.empty
#logical_not = numpy.logical_not
from numpy.ma import masked_array, mask_or, nomask
import _lowess, _stl, _mloess
#####---------------------------------------------------------------------------
#--- --- LOWESS ---
#####---------------------------------------------------------------------------
class lowess:
"""An object for robust locally weighted regression.
:IVariables:
inputs :
parameters :
outputs :
Method
------
The fitted values are computed by using the nearest neighbor
routine and robust locally weighted regression of degree 1
with the tricube weight function. A few additional features
have been added. Suppose r is FN truncated to an integer.
Let h be the distance to the r-th nearest neighbor
from X[i]. All points within h of X[i] are used. Thus if
the r-th nearest neighbor is exactly the same distance as
other points, more than r points can possibly be used for
the smooth at X[i]. There are two cases where robust
locally weighted regression of degree 0 is actually used at
X[i]. One case occurs when h is 0.0. The second case
occurs when the weighted standard error of the X[i] with
respect to the weights w[j] is less than .001 times the
range of the X[i], where w[j] is the weight assigned to the
j-th point of X (the tricube weight times the robustness
weight) divided by the sum of all of the weights. Finally,
if the w[j] are all zero for the smooth at X[i], the fitted
value is taken to be Y[i].
References
----------
W. S. Cleveland. 1978. Visual and Computational Considerations in
Smoothing Scatterplots by Locally Weighted Regression. In
Computer Science and Statistics: Eleventh Annual Symposium on the
Interface, pages 96-100. Institute of Statistics, North Carolina
State University, Raleigh, North Carolina, 1978.
W. S. Cleveland, 1979. Robust Locally Weighted Regression and
Smoothing Scatterplots. Journal of the American Statistical
Association, 74:829-836, 1979.
W. S. Cleveland, 1981. LOWESS: A Program for Smoothing Scatterplots
by Robust Locally Weighted Regression. The American Statistician,
35:54.
"""
#............................................
class _inputs(object):
"""Inputs of the lowess fit.
:IVariables:
x : ndarray
A (n,) float ndarray of observations (sorted by increasing values).
y : ndarray
A (n,) float ndarray of responses (sorted by increasing x).
"""
def __init__(self, x, y):
x = masked_array(x, copy=False, subok=True, dtype=float_, order='F').ravel()
y = masked_array(y, copy=False, subok=True, dtype=float_, order='F').ravel()
if x.size != y.size:
msg = "Incompatible size between observations (%s) and response (%s)!"
raise ValueError(msg % (x.size, y.size))
idx = x.argsort()
self._x = x[idx]
self._y = y[idx]
self._mask = mask_or(self._x._mask, self._y._mask,
copy=False)
#.....
x = property(fget=lambda self:self._x)
y = property(fget=lambda self:self._y)
#............................................
class _parameters(object):
"""Parameters of the lowess fit.
:IVariables:
span : float *[0.5]*
Fraction of the total number of points used to compute each fitted value.
As f increases the smoothed values become smoother. Choosing f in the range
.2 to .8 usually results in a good fit.
nsteps : integer *[2]*
Number of iterations in the robust fit. If nsteps=0, the nonrobust fit
is returned; setting nsteps=2 should serve most purposes.
delta : integer *[0]*
Nonnegative parameter which may be used to save computations.
If N (the number of observations) is less than 100, set delta=0.0;
if N is greater than 100 you should find out how delta works by reading
the additional instructions section.
"""
def __init__(self, span, nsteps, delta, caller):
self.activated = False
self._span = span
self._nsteps = nsteps
self._delta = delta
self._caller = caller
#.....
def _get_span(self):
"Gets the current span."
return self._span
def _set_span(self, span):
"Sets the current span, and refit if needed."
if span <= 0 or span > 1:
raise ValueError("span should be between zero and one!")
self._span = span
if self.activated:
self._caller.fit()
span = property(fget=_get_span, fset=_set_span)
#.....
def _get_nsteps(self):
"Gets the current number of iterations."
return self._nsteps
def _set_nsteps(self, nsteps):
"Sets the current number of iterations, and refit if needed."
if nsteps < 0:
raise ValueError("nsteps should be positive!")
self._nsteps = nsteps
if self.activated:
self._caller.fit()
nsteps = property(fget=_get_nsteps, fset=_set_nsteps)
#.....
def _get_delta(self):
"Gets the current delta."
return self._delta
def _set_delta(self, delta):
"Sets the current delta, and refit if needed."
if delta < 0:
raise ValueError("delta should be positive!")
self._delta = delta
if self.activated:
self._caller.fit()
delta = property(fget=_get_delta, fset=_set_delta)
#............................................
class _outputs(object):
"""Outputs of the lowess fit.
:IVariables:
fitted_values : ndarray
A (n,) ndarray of fitted values (readonly).
fitted_residuals : ndarray
A (n,) ndarray of residuals (readonly).
weights : ndarray
A (n,) ndarray of robust weights (readonly).
"""
def __init__(self, n):
self._fval = masked_array(empty((n,), dtype=float_, order='F'))
self._rw = masked_array(empty((n,), dtype=float_, order='F'))
self._fres = masked_array(empty((n,), dtype=float_, order='F'))
#.....
fitted_values = property(fget=lambda self:self._fval)
robust_weights = property(fget=lambda self:self._rw)
fitted_residuals = property(fget=lambda self:self._fres)
#............................................
def __init__(self, x, y, span=0.5, nsteps=2, delta=0):
"""
:Parameters:
x : ndarray
Abscissas of the points on the scatterplot; the values in X must be
ordered from smallest to largest.
y : ndarray
Ordinates of the points on the scatterplot.
span : Float *[0.5]*
Fraction of the total number of points used to compute each fitted value.
As span increases the smoothed values become smoother. Choosing span in
the range .2 to .8 usually results in a good fit.
nsteps : Integer *[2]*
Number of iterations in the robust fit. If nsteps=0, the nonrobust fit
is returned; setting nsteps=2 should serve most purposes.
delta : Integer *[0]*
Nonnegative parameter which may be used to save computations.
If N (the number of elements in x) is less than 100, set delta=0.0;
if N is greater than 100 you should find out how delta works by reading
the additional instructions section.
"""
# Chek the input data .........
# Initialize the attributes ...
self.inputs = lowess._inputs(x,y)
self.parameters = lowess._parameters(span, nsteps, delta, self)
self.outputs = self._outputs(self.inputs._x.size)
# Force a fit .................
self.fit()
#............................................
def fit(self):
# Check the mask .........
mask = self.inputs._mask
if mask.any():
unmask = logical_not(mask)
(x, y) = (self.inputs._x[unmask], self.inputs._y[unmask])
else:
unmask = slice(None,None)
(x, y) = (self.inputs._x, self.inputs._y)
# Get the parameters .....
self.parameters.activated = True
f = self.parameters._span
nsteps = self.parameters._nsteps
delta = self.parameters._delta
(tmp_s, tmp_w, tmp_r) = _lowess.lowess(x, y, f, nsteps, delta)
# Process the outputs .....
#... set the values
self.outputs._fval[unmask] = tmp_s[:]
self.outputs._rw[unmask] = tmp_w[:]
self.outputs._fres[unmask] = tmp_r[:]
#... set the masks
self.outputs._fval._set_mask(mask)
self.outputs._rw._set_mask(mask)
self.outputs._fres._set_mask(mask)
# Clean up the mess .......
del(tmp_s, tmp_w, tmp_r)
return self.outputs
#####---------------------------------------------------------------------------
#--- --- STL ---
#####---------------------------------------------------------------------------
class stl:
class _inputs:
def __init__(self, y):
self.y = masked_array(y, subok=True, copy=False).ravel()
self._mask = self.y._mask
if self._mask.any():
raise ValueError("Masked arrays should be filled first!")
self.y_eff = self.y.compressed()
#............................................
class _model(object):
"""Model parameters of the STL fit.
:IVariables:
np : Integer *[12]*
Period of the seasonal component.
For example, if the time series is monthly with a yearly cycle, then
np=12.
ns : Integer *[7]*
Length of the seasonal smoother.
The value of ns should be an odd integer greater than or equal to 3.
A value ns>6 is recommended. As ns increases the values of the
seasonal component at a given point in the seasonal cycle (e.g., January
values of a monthly series with a yearly cycle) become smoother.
nt : Integer *[None]*
Length of the trend smoother.
The value of nt should be an odd integer greater than or equal to 3.
A value of nt between 1.5*np and 2*np is recommended. As nt increases,
the values of the trend component become smoother.
If nt is None, it is estimated as the smallest odd integer greater
or equal to (1.5*np)/[1-(1.5/ns)]
nl : Integer *[None]*
Length of the low-pass filter.
The value of nl should be an odd integer greater than or equal to 3.
The smallest odd integer greater than or equal to np is used by default.
isdeg : Integer *[1]*
Degree of locally-fitted polynomial in seasonal smoothing.
The value is 0 or 1.
itdeg : Integer *[1]*
Degree of locally-fitted polynomial in trend smoothing.
The value is 0 or 1.
ildeg : Integer *[1]*
Degree of locally-fitted polynomial in low-pass smoothing.
The value is 0 or 1.
"""
def __init__(self,
np=12, ns=7, nt=None, nl=13,
isdeg=1, itdeg=1, ildeg=1, caller=None):
self._np = np
self._ns = ns
#
self._nt = nt
if nt is None:
self._nt = max(int((1.5*np/(1.-1.5/ns))+0.5), 3)
else:
self._nt = nt
if not self._nt % 2:
self._nt += 1
#
if nl is None:
self._nl = max(np, 3)
else:
self._nl = nl
if not self._nl % 2:
self._nl += 1
#
self._isdeg = isdeg
self._itdeg = itdeg
self._ildeg = ildeg
self.activated = False
self.caller = caller
#.....
def _get_np(self):
"Gets the current seasonal period."
return self._np
def _set_np(self, np):
"Sets the current seasonal period."
self._np = max(np,2)
if self.activated:
self.caller.fit()
np = property(fget=_get_np, fset=_set_np)
#.....
def _get_ns(self):
"Gets the length of the seasonal smoother."
return self._ns
def _set_ns(self, ns):
"Sets the length of the seasonal smoother."
self._ns = max(ns, 3)
if self._ns %2 == 0:
self._ns += 1
if self.activated:
self.caller.fit()
ns = property(fget=_get_ns, fset=_set_ns)
#.....
def _get_nt(self):
"Gets the length of the trend smoother."
return self._nt
def _set_nt(self, nt):
"Sets the length of the trend smoother."
self._nt = nt
if self.activated:
self.caller.fit()
nt = property(fget=_get_nt, fset=_set_nt)
#.....
def _get_nl(self):
"Gets the length of the trend smoother."
return self._nl
def _set_nl(self, nl):
"Sets the length of the trend smoother."
self._nl = nl
if self.activated:
self.caller.fit()
nl = property(fget=_get_nl, fset=_set_nl)
#.....
def _get_isdeg(self):
"Gets the degree of the seasonal smoother."
return self._isdeg
def _set_isdeg(self, isdeg):
"Sets the degree of the seasonal smoother."
if isdeg > 2 or isdeg < 0:
raise ValueError("The degree of the seasonal smoother should be 1 or 0.")
self._isdeg = int(isdeg)
if self.activated:
self.caller.fit()
isdeg = property(fget=_get_isdeg, fset=_set_isdeg)
#.....
def _get_itdeg(self):
"Gets the degree of the trend smoother."
return self._itdeg
def _set_itdeg(self, itdeg):
"Sets the degree of the trend smoother."
if itdeg > 2 or itdeg < 0:
raise ValueError("The degree of the trend smoother should be 1 or 0.")
self._itdeg = int(itdeg)
if self.activated:
self.caller.fit()
itdeg = property(fget=_get_itdeg, fset=_set_itdeg)
#.....
def _get_ildeg(self):
"Gets the degree of the low-pass smoother."
return self._ildeg
def _set_ildeg(self, ildeg):
"Sets the degree of the low-pass smoother."
if ildeg > 2 or ildeg < 0:
raise ValueError("The degree of the low-pass smoother should be 1 or 0.")
self._ildeg = int(ildeg)
if self.activated:
self.caller.fit()
ildeg = property(fget=_get_ildeg, fset=_set_ildeg)
#............................................
class _control(object):
"""Control parameters of the STL fit.
:IVariables:
nsjump : Integer *[None]*
Skipping value for seasonal smoothing.
The seasonal smoother skips ahead nsjump points and then linearly
interpolates in between. The value of nsjump should be a positive
integer; if nsjump=1, a seasonal smooth is calculated at all n points.
To make the procedure run faster, a reasonable choice for nsjump is
10%-20% of ns. By default, nsjump= 0.1*ns.
ntjump : Integer *[1]*
Skipping value for trend smoothing. If None, ntjump= 0.1*nt
nljump : Integer *[1]*
Skipping value for low-pass smoothing. If None, nljump= 0.1*nl
robust : Boolean *[True]*
Flag indicating whether robust fitting should be performed.
ni : Integer *[None]*
Number of loops for updating the seasonal and trend components.
The value of ni should be a positive integer.
See the next argument for advice on the choice of ni.
If ni is None, ni is set to 1 for robust fitting, to 5 otherwise.
no : Integer *[0]*
Number of iterations of robust fitting. The value of no should
be a nonnegative integer. If the data are well behaved without
outliers, then robustness iterations are not needed. In this case
set no=0, and set ni=2 to 5 depending on how much security
you want that the seasonal-trend looping converges.
If outliers are present then no=3 is a very secure value unless
the outliers are radical, in which case no=5 or even 10 might
be better. If no>0 then set ni to 1 or 2.
If None, then no is set to 15 for robust fitting, to 0 otherwise.
"""
def __init__(self,
nsjump=None,ntjump=None,nljump=None,
robust=True, ni=None,no=None, caller=None):
(self._nsjump, self._ntjump, self._nljump) = (nsjump, ntjump, nljump)
#...
if robust:
if ni is None:
ni = 1
if no is None:
no = 15
else:
if ni is None:
ni = 5
if no is None:
no = 0
(self._robust, self._ni, self._no) = (robust, ni, no)
#...
self.activated = False
self.caller = caller
#....
def _get_nsjump(self):
"Gets the skipping value for seasonal smoothing."
return self._nsjump
def _set_nsjump(self, nsjump):
"Sets the skipping value for seasonal smoothing."
self._nsjump = nsjump
if self.activated:
self.caller.fit()
nsjump = property(fget=_get_nsjump, fset=_set_nsjump)
#....
def _get_ntjump(self):
"Gets the skipping value for trend smoothing."
return self._ntjump
def _set_ntjump(self, ntjump):
"Sets the skipping value for trend smoothing."
self._ntjump = ntjump
if self.activated:
self.caller.fit()
ntjump = property(fget=_get_ntjump, fset=_set_ntjump)
#....
def _get_nljump(self):
"Gets the skipping value for low-pass smoothing."
return self._nljump
def _set_nljump(self, nljump):
"Set the skipping value for low-pass smoothings"
self._nljump = nljump
if self.activated:
self.caller.fit()
nljump = property(fget=_get_nljump, fset=_set_nljump)
#....
def _get_robust(self):
"Gets whether robust fitting should be performed."
return self._robust
def _set_robust(self, robust):
"Sets whether robust fitting should be performed."
self._robust = robust
if self.activated:
self.caller.fit()
robust = property(fget=_get_robust, fset=_set_robust)
#....
def _get_ni(self):
"Gets the number of loops."
return self._ni
def _set_ni(self, ni):
"Sets the number of loops."
if ni < 0:
raise ValueError("The number of loops should be positive!")
self._ni = ni
if self.activated:
self.caller.fit()
ni = property(fget=_get_ni, fset=_set_ni)
#....
def _get_no(self):
"Gets the number of iterations for robust fitting."
return self._no
def _set_no(self, no):
"Sets the number of iterations for robust fitting."
if no < 0 :
raise ValueError("The number of iterations should be positive!")
self._no = no
if self.activated:
self.caller.fit()
no = property(fget=_get_no, fset=_set_no)
#............................................
class _outputs(object):
"""Outputs of the STL fit.
:IVariables:
seasonal : ndarray
Seasonal fitted values.
trend : ndarray
Trend fitted values.
residuals : ndarray
Fitted residuals.
weights : ndarray
Local robust weights. The final local robust weights are all 1 if no=0.
"""
def __init__(self, n):
self._seasonal = masked_array(empty((n,), float_))
self._trend = masked_array(empty((n,), float_))
self._weights = masked_array(empty((n,), float_))
self._residuals = masked_array(empty((n,), float_))
#.....
seasonal = property(fget=lambda self:self._seasonal)
trend = property(fget=lambda self:self._trend)
weights = property(fget=lambda self:self._weights)
residuals = property(fget=lambda self:self._residuals)
#.............................................
def __init__(self, y, **options):
"""Decomposes a time series into seasonal and trend components.
:Parameters:
y : ndarray
Time series to be decomposed.
np : Integer *[12]*
Period of the seasonal component.
For example, if the time series is monthly with a yearly cycle, then
np=12.
ns : Integer *[7]*
Length of the seasonal smoother.
The value of ns should be an odd integer greater than or equal to 3.
A value ns>6 is recommended. As ns increases the values of the
seasonal component at a given point in the seasonal cycle (e.g., January
values of a monthly series with a yearly cycle) become smoother.
nt : Integer *[None]*
Length of the trend smoother.
The value of nt should be an odd integer greater than or equal to 3.
A value of nt between 1.5*np and 2*np is recommended. As nt increases,
the values of the trend component become smoother.
If nt is None, it is estimated as the smallest odd integer greater
or equal to (1.5*np)/[1-(1.5/ns)]
nl : Integer *[None]*
Length of the low-pass filter.
The value of nl should be an odd integer greater than or equal to 3.
The smallest odd integer greater than or equal to np is used by default.
isdeg : Integer *[1]*
Degree of locally-fitted polynomial in seasonal smoothing.
The value is 0 or 1.
itdeg : Integer *[1]*
Degree of locally-fitted polynomial in trend smoothing.
The value is 0 or 1.
ildeg : Integer *[1]*
Degree of locally-fitted polynomial in low-pass smoothing.
The value is 0 or 1.
nsjump : Integer *[None]*
Skipping value for seasonal smoothing.
The seasonal smoother skips ahead nsjump points and then linearly
interpolates in between. The value of nsjump should be a positive
integer; if nsjump=1, a seasonal smooth is calculated at all n points.
To make the procedure run faster, a reasonable choice for nsjump is
10%-20% of ns. By default, nsjump= 0.1*ns.
ntjump : Integer *[1]*
Skipping value for trend smoothing. If None, ntjump= 0.1*nt
nljump : Integer *[1]*
Skipping value for low-pass smoothing. If None, nljump= 0.1*nl
robust : Boolean *[True]*
Flag indicating whether robust fitting should be performed.
ni : Integer *[None]*
Number of loops for updating the seasonal and trend components.
The value of ni should be a positive integer.
See the next argument for advice on the choice of ni.
If ni is None, ni is set to 1 for robust fitting, to 5 otherwise.
no : Integer *[0]*
Number of iterations of robust fitting. The value of no should
be a nonnegative integer. If the data are well behaved without
outliers, then robustness iterations are not needed. In this case
set no=0, and set ni=2 to 5 depending on how much security
you want that the seasonal-trend looping converges.
If outliers are present then no=3 is a very secure value unless
the outliers are radical, in which case no=5 or even 10 might
be better. If no>0 then set ni to 1 or 2.
If None, then no is set to 15 for robust fitting, to 0 otherwise.
"""
self.inputs = stl._inputs(y)
self.model = stl._model(**dict(np=options.get('np',12),
ns=options.get('ns',7),
nt=options.get('nt',None),
nl=options.get('nl',13),
isdeg=options.get('isdeg',1),
itdeg=options.get('itdeg',1),
ildeg=options.get('ildeg',1),
caller=self))
optcontrol = dict(
nsjump=options.get('nsjump',int(0.1*self.model.ns+0.9)),
ntjump=options.get('ntjump',int(0.1*self.model.nt+0.9)),
nljump=options.get('nljump',int(0.1*self.model.nl+0.9)),
robust=options.get('robust',True),
ni=options.get('ni',None),
no=options.get('no',None),)
self.control = stl._control(**optcontrol)
self.outputs = stl._outputs(len(self.inputs.y))
# Force a fit .................
self.fit()
#............................................
def fit(self):
# Get the input ...............
y = self.inputs.y_eff
mask = self.inputs._mask
if mask is nomask:
unmask = slice(None,None)
else:
unmask = logical_not(mask)
# Get the parameters ..........
model = self.model
(np, ns, nt, nl) = (model.np, model.ns, model.nt, model.nl)
(isdeg, itdeg, ildeg) = (model.isdeg, model.itdeg, model.ildeg)
control = self.control
(nsjump, ntjump, nljump) = (control.nsjump, control.ntjump, control.nljump)
(ni, no) = (control.ni, control.no)
# Compute the fit .............
(rw,szn,trn,work) = _stl.stl(y,np,ns,nt,nl,isdeg,itdeg,ildeg,
nsjump,ntjump,nljump,ni,no,)
# Process the outputs .....
#... set the values
self.outputs.trend[unmask] = trn.flat
self.outputs.seasonal[unmask] = szn.flat
self.outputs.weights[unmask] = rw.flat
self.outputs.residuals[unmask] = (y-trn-szn)
#... set the masks
self.outputs.trend._set_mask(mask)
self.outputs.seasonal._set_mask(mask)
self.outputs.weights._set_mask(mask)
self.outputs.residuals._set_mask(mask)
# Clean up the mess .......
self.model.activated = self.control.activated = True
del(trn, rw, szn)
return self.outputs
def fstl(y, np=12, ns=7, nt=None, nl=13, isdeg=1, itdeg=1, ildeg=1,
nsjump=None,ntjump=None,nljump=None, robust=True, ni=None,no=None):
"""Decomposes a time series into seasonal and trend components.
:Parameters:
y : Numerical array
Time Series to be decomposed.
np : Integer *[12]*
Period of the seasonal component.
For example, if the time series is monthly with a yearly cycle, then
np=12.
ns : Integer *[7]*
Length of the seasonal smoother.
The value of ns should be an odd integer greater than or equal to 3.
A value ns>6 is recommended. As ns increases the values of the
seasonal component at a given point in the seasonal cycle (e.g., January
values of a monthly series with a yearly cycle) become smoother.
nt : Integer *[None]*
Length of the trend smoother.
The value of nt should be an odd integer greater than or equal to 3.
A value of nt between 1.5*np and 2*np is recommended. As nt increases,
the values of the trend component become smoother.
If nt is None, it is estimated as the smallest odd integer greater
or equal to (1.5*np)/[1-(1.5/ns)]
nl : Integer *[None]*
Length of the low-pass filter.
The value of nl should be an odd integer greater than or equal to 3.
The smallest odd integer greater than or equal to np is used by default.
isdeg : Integer *[1]*
Degree of locally-fitted polynomial in seasonal smoothing.
The value is 0 or 1.
itdeg : Integer *[1]*
Degree of locally-fitted polynomial in trend smoothing.
The value is 0 or 1.
ildeg : Integer *[1]*
Degree of locally-fitted polynomial in low-pass smoothing.
The value is 0 or 1.
nsjump : Integer *[None]*
Skipping value for seasonal smoothing.
The seasonal smoother skips ahead nsjump points and then linearly
interpolates in between. The value of nsjump should be a positive
integer; if nsjump=1, a seasonal smooth is calculated at all n points.
To make the procedure run faster, a reasonable choice for nsjump is
10%-20% of ns. By default, nsjump= 0.1*ns.
ntjump : Integer *[1]*
Skipping value for trend smoothing. If None, ntjump= 0.1*nt
nljump : Integer *[1]*
Skipping value for low-pass smoothing. If None, nljump= 0.1*nl
robust : Boolean *[True]*
Flag indicating whether robust fitting should be performed.
ni : Integer *[None]*
Number of loops for updating the seasonal and trend components.
The value of ni should be a positive integer.
See the next argument for advice on the choice of ni.
If ni is None, ni is set to 1 for robust fitting, to 5 otherwise.
no : Integer *[0]*
Number of iterations of robust fitting. The value of no should
be a nonnegative integer. If the data are well behaved without
outliers, then robustness iterations are not needed. In this case
set no=0, and set ni=2 to 5 depending on how much security
you want that the seasonal-trend looping converges.
If outliers are present then no=3 is a very secure value unless
the outliers are radical, in which case no=5 or even 10 might
be better. If no>0 then set ni to 1 or 2.
If None, then no is set to 15 for robust fitting, to 0 otherwise.
Returns:
A recarray of estimated trend values ('trend'), estimated seasonal
components ('seasonal'), local robust weights ('weights') and fit
residuals ('residuals').
The final local robust weights are all 1 if no=0.
Reference
---------
R. B. Cleveland, W. S. Cleveland, J. E. McRae and I. Terpenning.
1990. STL: A Seasonal-Trend Decomposition Procedure Based on LOESS
(with Discussion). Journal of Official Statistics, 6:3-73.
"""
ns = max(ns, 3)
if ns % 2 == 0:
ns += 1
np = max(2, np)
if nt is None:
nt = max(int((1.5*np/(1.-1.5/ns))+0.5), 3)
if not nt % 2:
nt += 1
if nl is None:
nl = max(3,np)
if not nl % 2:
nl += 1
if nsjump is None:
nsjump = int(0.1*ns + 0.9)
if ntjump is None:
ntjump = int(0.1*nt + 0.9)
if nljump is None:
nljump = int(0.1*nl + 0.9)
if robust:
if ni is None:
ni = 1
if no is None:
no = 15
else:
if ni is None:
ni = 5
if no is None:
no = 0
if hasattr(y,'_mask') and numpy.any(y._mask):
raise ValueError,"Missing values should first be filled !"
y = array(y, subok=True, copy=False).ravel()
(rw,szn,trn,work) = _stl.stl(y,np,ns,nt,nl,isdeg,itdeg,ildeg,
nsjump,ntjump,nljump,ni,no,)
dtyp = [('trend', float_), ('seasonal', float_),
('residuals', float_), ('weights', float_)]
result = fromiter(zip(trn,szn,y-trn-szn,rw), dtype=dtyp)
return result.view(recarray)
#####---------------------------------------------------------------------------
#--- --- Loess ---
#####---------------------------------------------------------------------------
loess = _mloess.loess
loess_anova = _mloess.anova