forked from yoyoyohamapi/mit-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.py
247 lines (224 loc) · 5.68 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# coding: utf-8
# linear_regression/regression.py
import numpy as np
import matplotlib as plt
import time
def exeTime(func):
""" 耗时计算装饰器
"""
def newFunc(*args, **args2):
t0 = time.time()
back = func(*args, **args2)
return back, time.time() - t0
return newFunc
def loadDataSet(filename):
""" 读取数据
从文件中获取数据,在《机器学习实战中》,数据格式如下
"feature1 TAB feature2 TAB feature3 TAB label"
Args:
filename 文件名
Returns:
X 训练样本集矩阵
y 标签集矩阵
"""
numFeat = len(open(filename).readline().split('\t')) - 1
X = []
y = []
file = open(filename)
for line in file.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
X.append(lineArr)
y.append(float(curLine[-1]))
return np.mat(X), np.mat(y).T
def h(theta, x):
"""预测函数
Args:
theta 相关系数矩阵
x 特征向量
Returns:
预测结果
"""
return (theta.T*x)[0,0]
def J(theta, X, y):
"""代价函数
Args:
theta 相关系数矩阵
X 样本集矩阵
y 标签集矩阵
Returns:
预测误差(代价)
"""
m = len(X)
return (X*theta-y).T*(X*theta-y)/(2*m)
@exeTime
def bgd(rate, maxLoop, epsilon, X, y):
"""批量梯度下降法
Args:
rate 学习率
maxLoop 最大迭代次数
epsilon 收敛精度
X 样本矩阵
y 标签矩阵
Returns:
(theta, errors, thetas), timeConsumed
"""
m,n = X.shape
# 初始化theta
theta = np.zeros((n,1))
count = 0
converged = False
error = float('inf')
errors = []
thetas = {}
for j in range(n):
thetas[j] = [theta[j,0]]
while count<=maxLoop:
if(converged):
break
count = count + 1
for j in range(n):
deriv = (y-X*theta).T*X[:, j]/m
theta[j,0] = theta[j,0]+rate*deriv
thetas[j].append(theta[j,0])
error = J(theta, X, y)
errors.append(error[0,0])
# 如果已经收敛
if(error < epsilon):
converged = True
return theta,errors,thetas
@exeTime
def sgd(rate, maxLoop, epsilon, X, y):
"""随机梯度下降法
Args:
rate 学习率
maxLoop 最大迭代次数
epsilon 收敛精度
X 样本矩阵
y 标签矩阵
Returns:
(theta, error, thetas), timeConsumed
"""
m,n = X.shape
# 初始化theta
theta = np.zeros((n,1))
count = 0
converged = False
error = float('inf')
errors = []
thetas = {}
for j in range(n):
thetas[j] = [theta[j,0]]
while count <= maxLoop:
if converged:
break
count = count + 1
errors.append(float('inf'))
for i in range(m):
if converged:
break
diff = y[i,0]-h(theta, X[i].T)
for j in range(n):
theta[j,0] = theta[j,0] + rate*diff*X[i, j]
thetas[j].append(theta[j,0])
error = J(theta, X, y)
errors[-1] = error[0,0]
# 如果已经收敛
if(error < epsilon):
converged = True
return theta, errors, thetas
def JLwr(theta, X, y, x, c):
"""局部加权线性回归的代价函数计算式
Args:
theta 相关系数矩阵
X 样本集矩阵
y 标签集矩阵
x 待预测输入
c tau
Returns:
预测代价
"""
m,n = X.shape
summerize = 0
for i in range(m):
diff = (X[i]-x)*(X[i]-x).T
w = np.exp(-diff/(2*c*c))
predictDiff = np.power(y[i] - X[i]*theta,2)
summerize = summerize + w*predictDiff
return summerize
@exeTime
def lwr(rate, maxLoop, epsilon, X, y, x, c=1):
"""局部加权线性回归
Args:
rate 学习率
maxLoop 最大迭代次数
epsilon 预测精度
X 输入样本
y 标签向量
x 待预测向量
c tau
"""
m,n = X.shape
# 初始化theta
theta = np.zeros((n,1))
count = 0
converged = False
error = float('inf')
errors = []
thetas = {}
for j in range(n):
thetas[j] = [theta[j,0]]
# 执行批量梯度下降
while count<=maxLoop:
if(converged):
break
count = count + 1
for j in range(n):
deriv = (y-X*theta).T*X[:, j]/m
theta[j,0] = theta[j,0]+rate*deriv
thetas[j].append(theta[j,0])
error = JLwr(theta, X, y, x, c)
errors.append(error[0,0])
# 如果已经收敛
if(error < epsilon):
converged = True
return theta,errors,thetas
def standarize(X):
"""特征标准化处理
Args:
X 样本集
Returns:
标准后的样本集
"""
m, n = X.shape
# 归一化每一个特征
for j in range(n):
features = X[:,j]
meanVal = features.mean(axis=0)
std = features.std(axis=0)
if std != 0:
X[:, j] = (features-meanVal)/std
else:
X[:, j] = 0
return X
def normalize(X):
"""特征归一化处理
Args:
X 样本集
Returns:
归一化后的样本集
"""
m, n = X.shape
# 归一化每一个特征
for j in range(n):
features = X[:,j]
minVal = features.min(axis=0)
maxVal = features.max(axis=0)
diff = maxVal - minVal
if diff != 0:
X[:,j] = (features-minVal)/diff
else:
X[:,j] = 0
return X