forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cpp_extensions.py
104 lines (81 loc) · 3.34 KB
/
test_cpp_extensions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import unittest
import torch
import torch.utils.cpp_extension
try:
import torch_test_cpp_extension as cpp_extension
except ModuleNotFoundError:
print("\'test_cpp_extensions.py\' cannot be invoked directly. " +
"Run \'python run_test.py -i cpp_extensions\' for the \'test_cpp_extensions.py\' tests.")
raise
import common
TEST_CUDA = torch.cuda.is_available()
class TestCppExtension(common.TestCase):
def test_extension_function(self):
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = cpp_extension.sigmoid_add(x, y)
self.assertEqual(z, x.sigmoid() + y.sigmoid())
def test_extension_module(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4)
expected = mm.get().mm(weights)
result = mm.forward(weights)
self.assertEqual(expected, result)
def test_backward(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4, requires_grad=True)
result = mm.forward(weights)
result.sum().backward()
tensor = mm.get()
expected_weights_grad = tensor.t().mm(torch.ones([4, 4]))
self.assertEqual(weights.grad, expected_weights_grad)
expected_tensor_grad = torch.ones([4, 4]).mm(weights.t())
self.assertEqual(tensor.grad, expected_tensor_grad)
def test_jit_compile_extension(self):
module = torch.utils.cpp_extension.load(
name='jit_extension',
sources=[
'cpp_extensions/jit_extension.cpp',
'cpp_extensions/jit_extension2.cpp'
],
extra_include_paths=['cpp_extensions'],
extra_cflags=['-g'],
verbose=True)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
# Checking we can call a method defined not in the main C++ file.
z = module.exp_add(x, y)
self.assertEqual(z, x.exp() + y.exp())
# Checking we can use this JIT-compiled class.
doubler = module.Doubler(2, 2)
self.assertIsNone(doubler.get().grad)
self.assertEqual(doubler.get().sum(), 4)
self.assertEqual(doubler.forward().sum(), 8)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_cuda_extension(self):
import torch_test_cuda_extension as cuda_extension
x = torch.FloatTensor(100).zero_().cuda()
y = torch.FloatTensor(100).zero_().cuda()
z = cuda_extension.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_jit_cuda_extension(self):
# NOTE: The name of the extension must equal the name of the module.
module = torch.utils.cpp_extension.load(
name='torch_test_cuda_extension',
sources=[
'cpp_extensions/cuda_extension.cpp',
'cpp_extensions/cuda_extension.cu'
],
extra_cuda_cflags=['-O2'],
verbose=True)
x = torch.FloatTensor(100).zero_().cuda()
y = torch.FloatTensor(100).zero_().cuda()
z = module.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
if __name__ == '__main__':
common.run_tests()