forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataloader.py
653 lines (525 loc) · 22.5 KB
/
test_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import math
import sys
import errno
import os
import ctypes
import signal
import torch
import time
import traceback
import unittest
from torch import multiprocessing
from torch.utils.data import Dataset, TensorDataset, DataLoader, ConcatDataset
from torch.utils.data.dataset import random_split
from torch.utils.data.dataloader import default_collate, ExceptionWrapper
from common import TestCase, run_tests, TEST_NUMPY, IS_WINDOWS
from common_nn import TEST_CUDA
JOIN_TIMEOUT = 17.0 if IS_WINDOWS else 4.5
class TestDatasetRandomSplit(TestCase):
def test_lengths_must_equal_datset_size(self):
with self.assertRaises(ValueError):
random_split([1, 2, 3, 4], [1, 2])
def test_splits_have_correct_size(self):
splits = random_split([1, 2, 3, 4, 5, 6], [2, 4])
self.assertEqual(len(splits), 2)
self.assertEqual(len(splits[0]), 2)
self.assertEqual(len(splits[1]), 4)
def test_splits_are_mutually_exclusive(self):
data = [5, 2, 3, 4, 1, 6]
splits = random_split(data, [2, 4])
all_values = []
all_values.extend(list(splits[0]))
all_values.extend(list(splits[1]))
data.sort()
all_values.sort()
self.assertListEqual(data, all_values)
class TestTensorDataset(TestCase):
def test_len(self):
source = TensorDataset(torch.randn(15, 10, 2, 3, 4, 5), torch.randperm(15))
self.assertEqual(len(source), 15)
def test_getitem(self):
t = torch.randn(15, 10, 2, 3, 4, 5)
l = torch.randn(15, 10)
source = TensorDataset(t, l)
for i in range(15):
self.assertEqual(t[i], source[i][0])
self.assertEqual(l[i], source[i][1])
def test_getitem_1d(self):
t = torch.randn(15)
l = torch.randn(15)
source = TensorDataset(t, l)
for i in range(15):
self.assertEqual(t[i], source[i][0])
self.assertEqual(l[i], source[i][1])
def test_single_tensor(self):
t = torch.randn(5, 10)
source = TensorDataset(t)
self.assertEqual(len(source), 5)
for i in range(5):
self.assertEqual(t[i], source[i][0])
def test_many_tensors(self):
t0 = torch.randn(5, 10, 2, 3, 4, 5)
t1 = torch.randn(5, 10)
t2 = torch.randn(5, 10, 2, 5)
t3 = torch.randn(5, 10, 3, 7)
source = TensorDataset(t0, t1, t2, t3)
self.assertEqual(len(source), 5)
for i in range(5):
self.assertEqual(t0[i], source[i][0])
self.assertEqual(t1[i], source[i][1])
self.assertEqual(t2[i], source[i][2])
self.assertEqual(t3[i], source[i][3])
class TestConcatDataset(TestCase):
def test_concat_two_singletons(self):
result = ConcatDataset([[0], [1]])
self.assertEqual(2, len(result))
self.assertEqual(0, result[0])
self.assertEqual(1, result[1])
def test_concat_two_non_singletons(self):
result = ConcatDataset([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
self.assertEqual(10, len(result))
self.assertEqual(0, result[0])
self.assertEqual(5, result[5])
def test_concat_two_non_singletons_with_empty(self):
# Adding an empty dataset somewhere is correctly handled
result = ConcatDataset([[0, 1, 2, 3, 4],
[],
[5, 6, 7, 8, 9]])
self.assertEqual(10, len(result))
self.assertEqual(0, result[0])
self.assertEqual(5, result[5])
def test_concat_raises_index_error(self):
result = ConcatDataset([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
with self.assertRaises(IndexError):
# this one goes to 11
result[11]
def test_add_dataset(self):
d1 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
d2 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
d3 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
result = d1 + d2 + d3
self.assertEqual(21, len(result))
self.assertEqual(0, (d1[0][0] - result[0][0]).abs().sum())
self.assertEqual(0, (d2[0][0] - result[7][0]).abs().sum())
self.assertEqual(0, (d3[0][0] - result[14][0]).abs().sum())
# Stores the first encountered exception in .exception.
# Inspired by https://stackoverflow.com/a/33599967
class ErrorTrackingProcess(multiprocessing.Process):
def __init__(self, *args, **kwargs):
super(ErrorTrackingProcess, self).__init__(*args, **kwargs)
self._pconn, self._cconn = multiprocessing.Pipe()
self._exception = None
def run(self):
# Disable stderr printing from os level, and make workers not printing
# to stderr.
# Can't use sys.stderr.close, otherwise Python `raise` will error with
# ValueError: I/O operation on closed file.
os.close(sys.stderr.fileno())
try:
super(ErrorTrackingProcess, self).run()
self._cconn.send(None)
except Exception as e:
self._cconn.send(ExceptionWrapper(sys.exc_info()))
raise
@property
def exception(self):
if self._pconn.poll():
self._exception = self._pconn.recv()
if self._exception is None:
return None
else:
return self._exception.exc_type(self._exception.exc_msg)
# ESRCH means that os.kill can't finds alive proc
def send_signal(self, signum, ignore_ESRCH=False):
try:
os.kill(self.pid, signum)
except OSError as e:
if not ignore_ESRCH or e.errno != errno.ESRCH:
raise
class ErrorDataset(Dataset):
def __init__(self, size):
self.size = size
def __len__(self):
return self.size
class SegfaultDataset(Dataset):
def __init__(self, size):
self.size = size
def __getitem__(self, idx):
return ctypes.string_at(0)
def __len__(self):
return self.size
class SleepDataset(Dataset):
def __init__(self, size, sleep_sec):
self.size = size
self.sleep_sec = sleep_sec
def __getitem__(self, idx):
time.sleep(self.sleep_sec)
return idx
def __len__(self):
return self.size
class SeedDataset(Dataset):
def __init__(self, size):
self.size = size
def __getitem__(self, idx):
return torch.initial_seed()
def __len__(self):
return self.size
# Inspired by https://stackoverflow.com/a/26703365
# This will ensure that each worker at least processes one data
class SynchronizedSeedDataset(Dataset):
def __init__(self, size, num_workers):
assert size >= num_workers
self.count = multiprocessing.Value('i', 0, lock=True)
self.barrier = multiprocessing.Semaphore(0)
self.num_workers = num_workers
self.size = size
def __getitem__(self, idx):
with self.count.get_lock():
self.count.value += 1
if self.count.value == self.num_workers:
self.barrier.release()
self.barrier.acquire()
self.barrier.release()
return torch.initial_seed()
def __len__(self):
return self.size
def _test_timeout():
dataset = SleepDataset(10, 10)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, timeout=1)
_ = next(iter(dataloader))
def _test_segfault():
dataset = SegfaultDataset(10)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2)
_ = next(iter(dataloader))
# test custom init function
def init_fn(worker_id):
torch.manual_seed(12345)
class TestDataLoader(TestCase):
def setUp(self):
self.data = torch.randn(100, 2, 3, 5)
self.labels = torch.randperm(50).repeat(2)
self.dataset = TensorDataset(self.data, self.labels)
def _test_sequential(self, loader):
batch_size = loader.batch_size
for i, (sample, target) in enumerate(loader):
idx = i * batch_size
self.assertEqual(sample, self.data[idx:idx + batch_size])
self.assertEqual(target, self.labels[idx:idx + batch_size])
self.assertEqual(i, math.floor((len(self.dataset) - 1) / batch_size))
def _test_shuffle(self, loader):
found_data = {i: 0 for i in range(self.data.size(0))}
found_labels = {i: 0 for i in range(self.labels.size(0))}
batch_size = loader.batch_size
for i, (batch_samples, batch_targets) in enumerate(loader):
for sample, target in zip(batch_samples, batch_targets):
for data_point_idx, data_point in enumerate(self.data):
if data_point.eq(sample).all():
self.assertFalse(found_data[data_point_idx])
found_data[data_point_idx] += 1
break
self.assertEqual(target, self.labels[data_point_idx])
found_labels[data_point_idx] += 1
self.assertEqual(sum(found_data.values()), (i + 1) * batch_size)
self.assertEqual(sum(found_labels.values()), (i + 1) * batch_size)
self.assertEqual(i, math.floor((len(self.dataset) - 1) / batch_size))
def _test_error(self, loader):
it = iter(loader)
errors = 0
while True:
try:
next(it)
except NotImplementedError:
errors += 1
except StopIteration:
self.assertEqual(errors,
math.ceil(float(len(loader.dataset)) / loader.batch_size))
return
def test_invalid_assign_after_init(self):
dl = DataLoader(self.dataset)
for attr in ('batch_size', 'sampler', 'drop_last'):
def fn():
setattr(dl, attr, {})
self.assertRaises(ValueError, fn)
def test_sequential(self):
self._test_sequential(DataLoader(self.dataset))
def test_sequential_batch(self):
self._test_sequential(DataLoader(self.dataset, batch_size=2))
def test_growing_dataset(self):
dataset = [torch.ones(4) for _ in range(4)]
dataloader_seq = DataLoader(dataset, shuffle=False)
dataloader_shuffle = DataLoader(dataset, shuffle=True)
dataset.append(torch.ones(4))
self.assertEqual(len(dataloader_seq), 5)
self.assertEqual(len(dataloader_shuffle), 5)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_sequential_pin_memory(self):
loader = DataLoader(self.dataset, batch_size=2, pin_memory=True)
for input, target in loader:
self.assertTrue(input.is_pinned())
self.assertTrue(target.is_pinned())
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_multiple_dataloaders(self):
loader1_it = iter(DataLoader(self.dataset, num_workers=1))
loader2_it = iter(DataLoader(self.dataset, num_workers=2))
next(loader1_it)
next(loader1_it)
next(loader2_it)
next(loader2_it)
next(loader1_it)
next(loader2_it)
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
@unittest.skip("temporarily disable until flaky failures are fixed")
def test_segfault(self):
p = ErrorTrackingProcess(target=_test_segfault)
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
self.assertNotEqual(p.exitcode, 0)
if IS_WINDOWS:
self.assertIsInstance(p.exception, OSError)
self.assertRegex(str(p.exception), r'access violation reading ')
else:
self.assertIsInstance(p.exception, RuntimeError)
self.assertRegex(str(p.exception), r'DataLoader worker \(pid \d+\) is killed by signal: ')
finally:
p.terminate()
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_timeout(self):
p = ErrorTrackingProcess(target=_test_timeout)
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
self.assertNotEqual(p.exitcode, 0)
self.assertIsInstance(p.exception, RuntimeError)
self.assertRegex(str(p.exception), r'DataLoader timed out after \d+ seconds')
finally:
p.terminate()
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_worker_seed(self):
num_workers = 6
dataset = SynchronizedSeedDataset(num_workers, num_workers)
dataloader = DataLoader(dataset, batch_size=1, num_workers=num_workers)
seeds = set()
for batch in dataloader:
seeds.add(batch[0])
self.assertEqual(len(seeds), num_workers)
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_worker_init_fn(self):
dataset = SeedDataset(4)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2,
worker_init_fn=init_fn)
for batch in dataloader:
self.assertEqual(12345, batch[0])
self.assertEqual(12345, batch[1])
def test_shuffle(self):
self._test_shuffle(DataLoader(self.dataset, shuffle=True))
def test_shuffle_batch(self):
self._test_shuffle(DataLoader(self.dataset, batch_size=2, shuffle=True))
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_sequential_workers(self):
self._test_sequential(DataLoader(self.dataset, num_workers=4))
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_seqential_batch_workers(self):
self._test_sequential(DataLoader(self.dataset, batch_size=2, num_workers=4))
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_shuffle_workers(self):
self._test_shuffle(DataLoader(self.dataset, shuffle=True, num_workers=4))
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_shuffle_batch_workers(self):
self._test_shuffle(DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4))
def _test_batch_sampler(self, **kwargs):
# [(0, 1), (2, 3, 4), (5, 6), (7, 8, 9), ...]
batches = []
for i in range(0, 100, 5):
batches.append(tuple(range(i, i + 2)))
batches.append(tuple(range(i + 2, i + 5)))
dl = DataLoader(self.dataset, batch_sampler=batches, **kwargs)
self.assertEqual(len(dl), 40)
for i, (input, _target) in enumerate(dl):
if i % 2 == 0:
offset = i * 5 // 2
self.assertEqual(len(input), 2)
self.assertEqual(input, self.data[offset:offset + 2])
else:
offset = i * 5 // 2
self.assertEqual(len(input), 3)
self.assertEqual(input, self.data[offset:offset + 3])
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_batch_sampler(self):
self._test_batch_sampler()
self._test_batch_sampler(num_workers=4)
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_shuffle_pin_memory(self):
loader = DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
for input, target in loader:
self.assertTrue(input.is_pinned())
self.assertTrue(target.is_pinned())
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_numpy(self):
import numpy as np
class TestDataset(torch.utils.data.Dataset):
def __getitem__(self, i):
return np.ones((2, 3, 4)) * i
def __len__(self):
return 1000
loader = DataLoader(TestDataset(), batch_size=12)
batch = next(iter(loader))
self.assertIsInstance(batch, torch.DoubleTensor)
self.assertEqual(batch.size(), torch.Size([12, 2, 3, 4]))
def test_error(self):
self._test_error(DataLoader(ErrorDataset(100), batch_size=2, shuffle=True))
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_error_workers(self):
self._test_error(DataLoader(ErrorDataset(41), batch_size=2, shuffle=True, num_workers=4))
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_partial_workers(self):
"check that workers exit even if the iterator is not exhausted"
loader = iter(DataLoader(self.dataset, batch_size=2, num_workers=4, pin_memory=True))
workers = loader.workers
worker_manager_thread = loader.worker_manager_thread
for i, sample in enumerate(loader):
if i == 3:
break
del loader
for w in workers:
w.join(JOIN_TIMEOUT)
self.assertFalse(w.is_alive(), 'subprocess not terminated')
self.assertEqual(w.exitcode, 0)
worker_manager_thread.join(JOIN_TIMEOUT)
self.assertFalse(worker_manager_thread.is_alive())
def test_len(self):
def check_len(dl, expected):
self.assertEqual(len(dl), expected)
n = 0
for sample in dl:
n += 1
self.assertEqual(n, expected)
check_len(self.dataset, 100)
check_len(DataLoader(self.dataset, batch_size=2), 50)
check_len(DataLoader(self.dataset, batch_size=3), 34)
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_numpy_scalars(self):
import numpy as np
class ScalarDataset(torch.utils.data.Dataset):
def __init__(self, dtype):
self.dtype = dtype
def __getitem__(self, i):
return self.dtype()
def __len__(self):
return 4
dtypes = {
np.float64: torch.DoubleTensor,
np.float32: torch.FloatTensor,
np.float16: torch.HalfTensor,
np.int64: torch.LongTensor,
np.int32: torch.IntTensor,
np.int16: torch.ShortTensor,
np.int8: torch.CharTensor,
np.uint8: torch.ByteTensor,
}
for dt, tt in dtypes.items():
dset = ScalarDataset(dt)
loader = DataLoader(dset, batch_size=2)
batch = next(iter(loader))
self.assertIsInstance(batch, tt)
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_default_colate_bad_numpy_types(self):
import numpy as np
# Should be a no-op
arr = np.array(['a', 'b', 'c'])
default_collate(arr)
arr = np.array([[['a', 'b', 'c']]])
self.assertRaises(TypeError, lambda: default_collate(arr))
arr = np.array([object(), object(), object()])
self.assertRaises(TypeError, lambda: default_collate(arr))
arr = np.array([[[object(), object(), object()]]])
self.assertRaises(TypeError, lambda: default_collate(arr))
class StringDataset(Dataset):
def __init__(self):
self.s = '12345'
def __len__(self):
return len(self.s)
def __getitem__(self, ndx):
return (self.s[ndx], ndx)
class TestStringDataLoader(TestCase):
def setUp(self):
self.dataset = StringDataset()
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_shuffle_pin_memory(self):
loader = DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
for batch_ndx, (s, n) in enumerate(loader):
self.assertIsInstance(s[0], str)
self.assertTrue(n.is_pinned())
class DictDataset(Dataset):
def __len__(self):
return 4
def __getitem__(self, ndx):
return {
'a_tensor': torch.Tensor(4, 2).fill_(ndx),
'another_dict': {
'a_number': ndx,
},
}
class TestDictDataLoader(TestCase):
def setUp(self):
self.dataset = DictDataset()
def test_sequential_batch(self):
loader = DataLoader(self.dataset, batch_size=2, shuffle=False)
batch_size = loader.batch_size
for i, sample in enumerate(loader):
idx = i * batch_size
self.assertEqual(set(sample.keys()), {'a_tensor', 'another_dict'})
self.assertEqual(set(sample['another_dict'].keys()), {'a_number'})
t = sample['a_tensor']
self.assertEqual(t.size(), torch.Size([batch_size, 4, 2]))
self.assertTrue((t[0] == idx).all())
self.assertTrue((t[1] == idx + 1).all())
n = sample['another_dict']['a_number']
self.assertEqual(n.size(), torch.Size([batch_size]))
self.assertEqual(n[0], idx)
self.assertEqual(n[1], idx + 1)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_pin_memory(self):
loader = DataLoader(self.dataset, batch_size=2, pin_memory=True)
for batch_ndx, sample in enumerate(loader):
self.assertTrue(sample['a_tensor'].is_pinned())
self.assertTrue(sample['another_dict']['a_number'].is_pinned())
class TestWorkerQueueDataset(Dataset):
def __init__(self, data):
self.data = data
self.worker_id = None
def worker_init_fn(self, worker_id):
self.worker_id = worker_id
def __getitem__(self, item):
return self.worker_id, self.data[item]
def __len__(self):
return len(self.data)
class TestIndividualWorkerQueue(TestCase):
def setUp(self):
self.dataset = TestWorkerQueueDataset([i for i in range(128)])
def _run_ind_worker_queue_test(self, batch_size, num_workers):
loader = DataLoader(
self.dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers,
worker_init_fn=self.dataset.worker_init_fn
)
current_worker_idx = 0
for i, (worker_ids, sample) in enumerate(loader):
self.assertEqual(worker_ids.tolist(), [current_worker_idx] * batch_size)
self.assertEqual(sample.tolist(), [j for j in range(i * batch_size, (i + 1) * batch_size)])
current_worker_idx += 1
if current_worker_idx == num_workers:
current_worker_idx = 0
@unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error")
def test_ind_worker_queue(self):
for batch_size in (8, 16, 32, 64):
for num_workers in range(1, 6):
self._run_ind_worker_queue_test(batch_size=batch_size, num_workers=num_workers)
if __name__ == '__main__':
run_tests()