forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_indexing.py
498 lines (411 loc) · 18.5 KB
/
test_indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from common import TestCase, run_tests
import unittest
import torch
import warnings
from torch.autograd import Variable
class TestIndexing(TestCase):
def test_single_int(self):
v = Variable(torch.randn(5, 7, 3))
self.assertEqual(v[4].shape, (7, 3))
def test_multiple_int(self):
v = Variable(torch.randn(5, 7, 3))
self.assertEqual(v[4].shape, (7, 3))
self.assertEqual(v[4, :, 1].shape, (7,))
def test_none(self):
v = Variable(torch.randn(5, 7, 3))
self.assertEqual(v[None].shape, (1, 5, 7, 3))
self.assertEqual(v[:, None].shape, (5, 1, 7, 3))
self.assertEqual(v[:, None, None].shape, (5, 1, 1, 7, 3))
self.assertEqual(v[..., None].shape, (5, 7, 3, 1))
def test_step(self):
v = Variable(torch.arange(10))
self.assertEqual(v[::1], v)
self.assertEqual(v[::2].data.tolist(), [0, 2, 4, 6, 8])
self.assertEqual(v[::3].data.tolist(), [0, 3, 6, 9])
self.assertEqual(v[::11].data.tolist(), [0])
self.assertEqual(v[1:6:2].data.tolist(), [1, 3, 5])
def test_step_assignment(self):
v = Variable(torch.zeros(4, 4))
v[0, 1::2] = Variable(torch.Tensor([3, 4]))
self.assertEqual(v[0].data.tolist(), [0, 3, 0, 4])
self.assertEqual(v[1:].data.sum(), 0)
def test_byte_mask(self):
v = Variable(torch.randn(5, 7, 3))
mask = Variable(torch.ByteTensor([1, 0, 1, 1, 0]))
self.assertEqual(v[mask].shape, (3, 7, 3))
self.assertEqual(v[mask], torch.stack([v[0], v[2], v[3]]))
v = Variable(torch.Tensor([1]))
self.assertEqual(v[v == 0], Variable(torch.Tensor()))
def test_multiple_byte_mask(self):
v = Variable(torch.randn(5, 7, 3))
# note: these broadcast together and are transposed to the first dim
mask1 = Variable(torch.ByteTensor([1, 0, 1, 1, 0]))
mask2 = Variable(torch.ByteTensor([1, 1, 1]))
self.assertEqual(v[mask1, :, mask2].shape, (3, 7))
def test_byte_mask2d(self):
v = Variable(torch.randn(5, 7, 3))
c = Variable(torch.randn(5, 7))
num_ones = (c > 0).data.sum()
r = v[c > 0]
self.assertEqual(r.shape, (num_ones, 3))
def test_int_indices(self):
v = Variable(torch.randn(5, 7, 3))
self.assertEqual(v[[0, 4, 2]].shape, (3, 7, 3))
self.assertEqual(v[:, [0, 4, 2]].shape, (5, 3, 3))
self.assertEqual(v[:, [[0, 1], [4, 3]]].shape, (5, 2, 2, 3))
def test_int_indices2d(self):
# From the NumPy indexing example
x = Variable(torch.arange(0, 12).view(4, 3))
rows = Variable(torch.LongTensor([[0, 0], [3, 3]]))
columns = Variable(torch.LongTensor([[0, 2], [0, 2]]))
self.assertEqual(x[rows, columns].data.tolist(), [[0, 2], [9, 11]])
def test_int_indices_broadcast(self):
# From the NumPy indexing example
x = Variable(torch.arange(0, 12).view(4, 3))
rows = Variable(torch.LongTensor([0, 3]))
columns = Variable(torch.LongTensor([0, 2]))
result = x[rows[:, None], columns]
self.assertEqual(result.data.tolist(), [[0, 2], [9, 11]])
def test_empty_index(self):
x = Variable(torch.arange(0, 12).view(4, 3))
idx = Variable(torch.LongTensor())
self.assertEqual(x[idx].numel(), 0)
# empty assignment should have no effect but not throw an exception
y = x.clone()
y[idx] = -1
self.assertEqual(x, y)
mask = torch.zeros(4, 3).byte()
y[mask] = -1
self.assertEqual(x, y)
def test_index_getitem_copy_bools_slices(self):
true = torch.tensor(1, dtype=torch.uint8)
false = torch.tensor(0, dtype=torch.uint8)
tensors = [Variable(torch.randn(2, 3)), torch.tensor(3)]
for a in tensors:
self.assertNotEqual(a.data_ptr(), a[True].data_ptr())
self.assertEqual(torch.tensor([]), a[False])
self.assertNotEqual(a.data_ptr(), a[true].data_ptr())
self.assertEqual(torch.tensor([]), a[false])
self.assertEqual(a.data_ptr(), a[None].data_ptr())
self.assertEqual(a.data_ptr(), a[...].data_ptr())
def test_index_setitem_bools_slices(self):
true = torch.tensor(1, dtype=torch.uint8)
false = torch.tensor(0, dtype=torch.uint8)
tensors = [Variable(torch.randn(2, 3)), torch.tensor(3)]
for a in tensors:
# prefix with a 1,1, to ensure we are compatible with numpy which cuts off prefix 1s
# (some of these ops already prefix a 1 to the size)
neg_ones = torch.ones_like(a) * -1
neg_ones_expanded = neg_ones.unsqueeze(0).unsqueeze(0)
a[True] = neg_ones_expanded
self.assertEqual(a, neg_ones)
a[False] = 5
self.assertEqual(a, neg_ones)
a[true] = neg_ones_expanded * 2
self.assertEqual(a, neg_ones * 2)
a[false] = 5
self.assertEqual(a, neg_ones * 2)
a[None] = neg_ones_expanded * 3
self.assertEqual(a, neg_ones * 3)
a[...] = neg_ones_expanded * 4
self.assertEqual(a, neg_ones * 4)
if a.dim() == 0:
with self.assertRaises(RuntimeError):
a[:] = neg_ones_expanded * 5
def test_setitem_expansion_error(self):
true = torch.tensor(1, dtype=torch.uint8)
a = Variable(torch.randn(2, 3))
# check prefix with non-1s doesn't work
a_expanded = a.expand(torch.Size([5, 1]) + a.size())
with self.assertRaises(RuntimeError):
a[True] = a_expanded
with self.assertRaises(RuntimeError):
a[true] = torch.autograd.Variable(a_expanded)
def test_getitem_scalars(self):
zero = torch.tensor(0, dtype=torch.int64)
one = torch.tensor(1, dtype=torch.int64)
# non-scalar indexed with scalars
a = Variable(torch.randn(2, 3))
self.assertEqual(a[0], a[zero])
self.assertEqual(a[0][1], a[zero][one])
self.assertEqual(a[0, 1], a[zero, one])
self.assertEqual(a[0, one], a[zero, 1])
# scalar indexed with scalar
r = torch.tensor(0.).normal_()
with self.assertRaises(RuntimeError):
r[:]
with self.assertRaises(IndexError):
r[zero]
self.assertEqual(r, r[...])
def test_setitem_scalars(self):
zero = torch.tensor(0, dtype=torch.int64)
# non-scalar indexed with scalars
a = Variable(torch.randn(2, 3))
a_set_with_number = a.clone()
a_set_with_scalar = a.clone()
b = Variable(torch.randn(3))
a_set_with_number[0] = b
a_set_with_scalar[zero] = b
self.assertEqual(a_set_with_number, a_set_with_scalar)
a[1, zero] = 7.7
self.assertEqual(7.7, a[1, 0])
# scalar indexed with scalars
r = torch.tensor(0.).normal_()
with self.assertRaises(RuntimeError):
r[:] = 8.8
with self.assertRaises(IndexError):
r[zero] = 8.8
r[...] = 9.9
self.assertEqual(9.9, r)
def test_basic_advanced_combined(self):
# From the NumPy indexing example
x = Variable(torch.arange(0, 12).view(4, 3))
self.assertEqual(x[1:2, 1:3], x[1:2, [1, 2]])
self.assertEqual(x[1:2, 1:3].data.tolist(), [[4, 5]])
# Check that it is a copy
unmodified = x.clone()
x[1:2, [1, 2]].zero_()
self.assertEqual(x, unmodified)
# But assignment should modify the original
unmodified = x.clone()
x[1:2, [1, 2]] = 0
self.assertNotEqual(x, unmodified)
def test_int_assignment(self):
x = Variable(torch.arange(0, 4).view(2, 2))
x[1] = 5
self.assertEqual(x.data.tolist(), [[0, 1], [5, 5]])
x = Variable(torch.arange(0, 4).view(2, 2))
x[1] = Variable(torch.arange(5, 7))
self.assertEqual(x.data.tolist(), [[0, 1], [5, 6]])
def test_byte_tensor_assignment(self):
x = Variable(torch.arange(0, 16).view(4, 4))
b = Variable(torch.ByteTensor([True, False, True, False]))
value = Variable(torch.Tensor([3, 4, 5, 6]))
x[b] = value
self.assertEqual(x[0], value)
self.assertEqual(x[1].data, torch.arange(4, 8))
self.assertEqual(x[2], value)
self.assertEqual(x[3].data, torch.arange(12, 16))
def test_variable_slicing(self):
x = Variable(torch.arange(0, 16).view(4, 4))
indices = Variable(torch.IntTensor([0, 1]))
i, j = indices
self.assertEqual(x[i:j], x[0:1])
def test_ellipsis_tensor(self):
x = Variable(torch.arange(0, 9).view(3, 3))
idx = Variable(torch.LongTensor([0, 2]))
self.assertEqual(x[..., idx].tolist(), [[0, 2],
[3, 5],
[6, 8]])
self.assertEqual(x[idx, ...].tolist(), [[0, 1, 2],
[6, 7, 8]])
def test_invalid_index(self):
x = Variable(torch.arange(0, 16).view(4, 4))
self.assertRaisesRegex(TypeError, 'slice indices', lambda: x["0":"1"])
def test_zero_dim_index(self):
# We temporarily support indexing a zero-dim tensor as if it were
# a one-dim tensor to better maintain backwards compatibility.
x = torch.tensor(10)
with warnings.catch_warnings(record=True) as w:
self.assertEqual(x, x[0])
self.assertEqual(len(w), 1)
def tensor(*args, **kwargs):
return Variable(torch.Tensor(*args, **kwargs))
def byteTensor(data):
return Variable(torch.ByteTensor(data))
def ones(*args):
return Variable(torch.ones(*args))
def zeros(*args):
return Variable(torch.zeros(*args))
# The tests below are from NumPy test_indexing.py with some modifications to
# make them compatible with PyTorch. It's licensed under the BDS license below:
#
# Copyright (c) 2005-2017, NumPy Developers.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of the NumPy Developers nor the names of any
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
class NumpyTests(TestCase):
def test_index_no_floats(self):
a = Variable(torch.Tensor([[[5]]]))
self.assertRaises(IndexError, lambda: a[0.0])
self.assertRaises(IndexError, lambda: a[0, 0.0])
self.assertRaises(IndexError, lambda: a[0.0, 0])
self.assertRaises(IndexError, lambda: a[0.0, :])
self.assertRaises(IndexError, lambda: a[:, 0.0])
self.assertRaises(IndexError, lambda: a[:, 0.0, :])
self.assertRaises(IndexError, lambda: a[0.0, :, :])
self.assertRaises(IndexError, lambda: a[0, 0, 0.0])
self.assertRaises(IndexError, lambda: a[0.0, 0, 0])
self.assertRaises(IndexError, lambda: a[0, 0.0, 0])
self.assertRaises(IndexError, lambda: a[-1.4])
self.assertRaises(IndexError, lambda: a[0, -1.4])
self.assertRaises(IndexError, lambda: a[-1.4, 0])
self.assertRaises(IndexError, lambda: a[-1.4, :])
self.assertRaises(IndexError, lambda: a[:, -1.4])
self.assertRaises(IndexError, lambda: a[:, -1.4, :])
self.assertRaises(IndexError, lambda: a[-1.4, :, :])
self.assertRaises(IndexError, lambda: a[0, 0, -1.4])
self.assertRaises(IndexError, lambda: a[-1.4, 0, 0])
self.assertRaises(IndexError, lambda: a[0, -1.4, 0])
# self.assertRaises(IndexError, lambda: a[0.0:, 0.0])
# self.assertRaises(IndexError, lambda: a[0.0:, 0.0,:])
def test_none_index(self):
# `None` index adds newaxis
a = tensor([1, 2, 3])
self.assertEqual(a[None].dim(), a.dim() + 1)
def test_empty_tuple_index(self):
# Empty tuple index creates a view
a = tensor([1, 2, 3])
self.assertEqual(a[()], a)
self.assertEqual(a[()].data_ptr(), a.data_ptr())
def test_empty_fancy_index(self):
# Empty list index creates an empty array
a = tensor([1, 2, 3])
self.assertEqual(a[[]], Variable(torch.Tensor()))
b = tensor([]).long()
self.assertEqual(a[[]], Variable(torch.LongTensor()))
b = tensor([]).float()
self.assertRaises(RuntimeError, lambda: a[b])
def test_ellipsis_index(self):
a = tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
self.assertIsNot(a[...], a)
self.assertEqual(a[...], a)
# `a[...]` was `a` in numpy <1.9.
self.assertEqual(a[...].data_ptr(), a.data_ptr())
# Slicing with ellipsis can skip an
# arbitrary number of dimensions
self.assertEqual(a[0, ...], a[0])
self.assertEqual(a[0, ...], a[0, :])
self.assertEqual(a[..., 0], a[:, 0])
# In NumPy, slicing with ellipsis results in a 0-dim array. In PyTorch
# we don't have separate 0-dim arrays and scalars.
self.assertEqual(a[0, ..., 1], torch.tensor(2))
# Assignment with `(Ellipsis,)` on 0-d arrays
b = torch.tensor(1)
b[(Ellipsis,)] = 2
self.assertEqual(b, 2)
def test_single_int_index(self):
# Single integer index selects one row
a = tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
self.assertEqual(a[0].data, [1, 2, 3])
self.assertEqual(a[-1].data, [7, 8, 9])
# Index out of bounds produces IndexError
self.assertRaises(IndexError, a.__getitem__, 1 << 30)
# Index overflow produces Exception NB: different exception type
self.assertRaises(Exception, a.__getitem__, 1 << 64)
def test_single_bool_index(self):
# Single boolean index
a = tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
self.assertEqual(a[True], a[None])
self.assertEqual(a[False], a[None][0:0])
def test_boolean_shape_mismatch(self):
arr = ones((5, 4, 3))
# TODO: prefer IndexError
index = byteTensor([True])
self.assertRaisesRegex(RuntimeError, 'mask', lambda: arr[index])
index = byteTensor([False] * 6)
self.assertRaisesRegex(RuntimeError, 'mask', lambda: arr[index])
index = Variable(torch.ByteTensor(4, 4)).zero_()
self.assertRaisesRegex(RuntimeError, 'mask', lambda: arr[index])
self.assertRaisesRegex(RuntimeError, 'mask', lambda: arr[(slice(None), index)])
def test_boolean_indexing_onedim(self):
# Indexing a 2-dimensional array with
# boolean array of length one
a = tensor([[0., 0., 0.]])
b = byteTensor([True])
self.assertEqual(a[b], a)
# boolean assignment
a[b] = 1.
self.assertEqual(a, tensor([[1., 1., 1.]]))
def test_boolean_assignment_value_mismatch(self):
# A boolean assignment should fail when the shape of the values
# cannot be broadcast to the subscription. (see also gh-3458)
a = Variable(torch.arange(0, 4))
def f(a, v):
a[a > -1] = tensor(v)
self.assertRaisesRegex(Exception, "expand", f, a, [])
self.assertRaisesRegex(Exception, 'expand', f, a, [1, 2, 3])
self.assertRaisesRegex(Exception, 'expand', f, a[:1], [1, 2, 3])
def test_boolean_indexing_twodim(self):
# Indexing a 2-dimensional array with
# 2-dimensional boolean array
a = tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
b = byteTensor([[True, False, True],
[False, True, False],
[True, False, True]])
self.assertEqual(a[b], tensor([1, 3, 5, 7, 9]))
self.assertEqual(a[b[1]], tensor([[4, 5, 6]]))
self.assertEqual(a[b[0]], a[b[2]])
# boolean assignment
a[b] = 0
self.assertEqual(a, tensor([[0, 2, 0],
[4, 0, 6],
[0, 8, 0]]))
def test_everything_returns_views(self):
# Before `...` would return a itself.
a = tensor(5)
self.assertIsNot(a, a[()])
self.assertIsNot(a, a[...])
self.assertIsNot(a, a[:])
def test_broaderrors_indexing(self):
a = zeros(5, 5)
self.assertRaisesRegex(RuntimeError, 'match the size', a.__getitem__, ([0, 1], [0, 1, 2]))
self.assertRaisesRegex(RuntimeError, 'match the size', a.__setitem__, ([0, 1], [0, 1, 2]), 0)
def test_trivial_fancy_out_of_bounds(self):
a = zeros(5)
ind = ones(20).long()
ind[-1] = 10
self.assertRaises(RuntimeError, a.__getitem__, ind)
self.assertRaises(RuntimeError, a.__setitem__, ind, 0)
ind = ones(20).long()
ind[0] = 11
self.assertRaises(RuntimeError, a.__getitem__, ind)
self.assertRaises(RuntimeError, a.__setitem__, ind, 0)
def test_index_is_larger(self):
# Simple case of fancy index broadcasting of the index.
a = zeros((5, 5))
a[[[0], [1], [2]], [0, 1, 2]] = tensor([2, 3, 4])
self.assertTrue((a[:3, :3] == tensor([2, 3, 4])).all())
def test_broadcast_subspace(self):
a = zeros((100, 100))
v = Variable(torch.arange(0, 100))[:, None]
b = Variable(torch.arange(99, -1, -1).long())
a[b] = v
expected = b.double().unsqueeze(1).expand(100, 100)
self.assertEqual(a, expected)
if __name__ == '__main__':
run_tests()