forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_net.cpp
57 lines (46 loc) · 1.55 KB
/
test_net.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// Copyright 2014 BVLC and contributors.
//
// This is a simple script that allows one to quickly test a network whose
// structure is specified by text format protocol buffers, and whose parameter
// are loaded from a pre-trained network.
// Usage:
// test_net net_proto pretrained_net_proto iterations [CPU/GPU]
#include <cuda_runtime.h>
#include <cstring>
#include <cstdlib>
#include <vector>
#include "caffe/caffe.hpp"
using namespace caffe; // NOLINT(build/namespaces)
int main(int argc, char** argv) {
if (argc < 4 || argc > 6) {
LOG(ERROR) << "test_net net_proto pretrained_net_proto iterations "
<< "[CPU/GPU] [Device ID]";
return 1;
}
Caffe::set_phase(Caffe::TEST);
if (argc >= 5 && strcmp(argv[4], "GPU") == 0) {
Caffe::set_mode(Caffe::GPU);
int device_id = 0;
if (argc == 6) {
device_id = atoi(argv[5]);
}
Caffe::SetDevice(device_id);
LOG(ERROR) << "Using GPU #" << device_id;
} else {
LOG(ERROR) << "Using CPU";
Caffe::set_mode(Caffe::CPU);
}
Net<float> caffe_test_net(argv[1]);
caffe_test_net.CopyTrainedLayersFrom(argv[2]);
int total_iter = atoi(argv[3]);
LOG(ERROR) << "Running " << total_iter << " iterations.";
double test_accuracy = 0;
for (int i = 0; i < total_iter; ++i) {
const vector<Blob<float>*>& result = caffe_test_net.ForwardPrefilled();
test_accuracy += result[0]->cpu_data()[0];
LOG(ERROR) << "Batch " << i << ", accuracy: " << result[0]->cpu_data()[0];
}
test_accuracy /= total_iter;
LOG(ERROR) << "Test accuracy: " << test_accuracy;
return 0;
}