forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLValue.h
516 lines (436 loc) · 19 KB
/
LValue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
//===--- LValue.h - Logical LValue Representation ---------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A storage structure for keeping track of logical lvalues during SILGen.
//
// In general, only the routines in SILGenLValue.cpp should actually be
// accessing LValues and their components. Everything else should just
// pass them around opaquely.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_LOWERING_LVALUE_H
#define SWIFT_LOWERING_LVALUE_H
#include "SILGenFunction.h"
namespace swift {
namespace Lowering {
class SILGenFunction;
class ManagedValue;
class PhysicalPathComponent;
class LogicalPathComponent;
class TranslationPathComponent;
/// Information about the type of an l-value.
struct LValueTypeData {
/// The abstraction pattern of the l-value.
///
/// The type-of-rvalue should always be the substituted formal type
/// lowered under this abstraction pattern.
AbstractionPattern OrigFormalType = AbstractionPattern::getInvalid();
/// The substituted formal object type of the l-value.
///
/// Tn the most common case, this is the type of an l-value
/// expression as recorded in the AST, only with the
/// LValueType/InOutType stripped off.
CanType SubstFormalType;
/// The lowered type of value that should be stored in the l-value.
/// Always an object type.
///
/// On physical path components, projection yields an address of
/// this type. On logical path components, materialize yields an
/// address of this type, set expects a value of this type, and
/// get yields a vlaue of this type.
SILType TypeOfRValue;
LValueTypeData() = default;
LValueTypeData(AbstractionPattern origFormalType, CanType substFormalType,
SILType typeOfRValue)
: OrigFormalType(origFormalType), SubstFormalType(substFormalType),
TypeOfRValue(typeOfRValue) {
assert(typeOfRValue.isObject());
assert(substFormalType->isMaterializable());
}
};
/// An l-value path component represents a chunk of the access path to
/// an object. Path components may be either "physical" or "logical".
/// A physical path involves elementary address manipulations; these
/// address manipulations may be in some way dynamic, but they are
/// ultimately just pointer arithmetic. A logical path requires
/// getter/setter logic.
///
/// This divide between physical/logical is closely related to the
/// fragile/resilient split, with two primary differences:
/// - Any sort of implementation can be fragile. For example, a
/// computed variable can still be fragile, meaning that it is known
/// to be implemented with a getter/setter. The known
/// implementation must be a direct offset in order to qualify as
/// physical.
/// - A path component's implementation can be resilient and yet
/// still qualify for physical access if we are in a privileged
/// component.
class PathComponent {
LValueTypeData TypeData;
friend class LValue;
unsigned AllocatedSize;
public:
enum KindTy {
// Physical lvalue kinds
RefElementKind, // ref_element_addr
TupleElementKind, // tuple_element_addr
StructElementKind, // struct_element_addr
OptionalObjectKind, // optional projection
OpenedExistentialKind, // opened opaque existential
AddressorKind, // var/subscript addressor
ValueKind, // random base pointer as an lvalue
// Logical LValue kinds
GetterSetterKind, // property or subscript getter/setter
OwnershipKind, // weak pointer remapping
AutoreleasingWritebackKind, // autorelease pointer on set
WritebackPseudoKind, // a fake component to customize writeback
// Translation LValue kinds (a subtype of logical)
OrigToSubstKind, // generic type substitution
SubstToOrigKind, // generic type substitution
FirstLogicalKind = GetterSetterKind,
FirstTranslationKind = OrigToSubstKind,
};
private:
const KindTy Kind : 8;
// This anchor method serves three purposes: it aligns the class to
// a pointer boundary, it makes the class a primary base so that
// subclasses will be at offset zero, and it anchors the v-table
// to a specific file.
virtual void _anchor();
PathComponent(const PathComponent &) = delete;
PathComponent &operator=(const PathComponent &) = delete;
protected:
PathComponent(LValueTypeData typeData, KindTy Kind)
: TypeData(typeData), Kind(Kind) {}
public:
virtual ~PathComponent() {}
/// Returns sizeof(the final type), plus any extra storage required.
size_t allocated_size() const { return AllocatedSize; }
/// Is this component physical or logical? If physical, this will
/// be a subclass of PhysicalPathComponent. If logical, this will
/// be a subclass of LogicalPathComponent.
bool isPhysical() const { return Kind < FirstLogicalKind; }
bool isLogical() const { return Kind >= FirstLogicalKind; }
bool isTranslation() const { return Kind >= FirstTranslationKind; }
// These are implemented inline after the respective class declarations.
PhysicalPathComponent &asPhysical();
const PhysicalPathComponent &asPhysical() const;
LogicalPathComponent &asLogical();
const LogicalPathComponent &asLogical() const;
TranslationPathComponent &asTranslation();
const TranslationPathComponent &asTranslation() const;
/// Return the appropriate access kind to use when producing the
/// base value.
virtual AccessKind getBaseAccessKind(SILGenFunction &SGF,
AccessKind accessKind) const = 0;
/// Returns the logical type-as-rvalue of the value addressed by the
/// component. This is always an object type, never an address.
SILType getTypeOfRValue() const { return TypeData.TypeOfRValue; }
AbstractionPattern getOrigFormalType() const {
return TypeData.OrigFormalType;
}
CanType getSubstFormalType() const { return TypeData.SubstFormalType; }
const LValueTypeData &getTypeData() const { return TypeData; }
KindTy getKind() const { return Kind; }
void dump() const;
virtual void print(raw_ostream &OS) const = 0;
};
/// An abstract class for "physical" path components, i.e. path
/// components that can be accessed as address manipulations. See the
/// comment for PathComponent for more information.
class PhysicalPathComponent : public PathComponent {
virtual void _anchor() override;
protected:
PhysicalPathComponent(LValueTypeData typeData, KindTy Kind)
: PathComponent(typeData, Kind) {
assert(isPhysical() && "PhysicalPathComponent Kind isn't physical");
}
public:
/// Derive the address of this component given the address of the base.
///
/// \param base - always an address, but possibly an r-value
virtual ManagedValue offset(SILGenFunction &gen,
SILLocation loc,
ManagedValue base,
AccessKind accessKind) && = 0;
AccessKind getBaseAccessKind(SILGenFunction &gen,
AccessKind accessKind) const override {
return accessKind;
}
};
inline PhysicalPathComponent &PathComponent::asPhysical() {
assert(isPhysical());
return static_cast<PhysicalPathComponent&>(*this);
}
inline const PhysicalPathComponent &PathComponent::asPhysical() const {
assert(isPhysical());
return static_cast<const PhysicalPathComponent&>(*this);
}
/// An abstract class for "logical" path components, i.e. path
/// components that require getter/setter methods to access. See the
/// comment for PathComponent for more information.
class LogicalPathComponent : public PathComponent {
virtual void _anchor();
protected:
LogicalPathComponent(LValueTypeData typeData, KindTy Kind)
: PathComponent(typeData, Kind) {
assert(isLogical() && "LogicalPathComponent Kind isn't logical");
}
public:
/// Clone the path component onto the heap.
virtual std::unique_ptr<LogicalPathComponent>
clone(SILGenFunction &gen, SILLocation l) const = 0;
/// Set the property.
///
/// \param base - always an address, but possibly an r-value
virtual void set(SILGenFunction &gen, SILLocation loc,
RValue &&value, ManagedValue base) && = 0;
/// Get the property.
///
/// \param base - always an address, but possibly an r-value
virtual ManagedValue get(SILGenFunction &gen, SILLocation loc,
ManagedValue base, SGFContext c) && = 0;
/// Compare 'this' lvalue and the 'rhs' lvalue (which is guaranteed to have
/// the same dynamic PathComponent type as the receiver) to see if they are
/// identical. If so, there is a conflicting writeback happening, so emit a
/// diagnostic.
virtual void diagnoseWritebackConflict(LogicalPathComponent *rhs,
SILLocation loc1, SILLocation loc2,
SILGenFunction &gen) = 0;
/// Materialize the storage into memory. If the access is for
/// mutation, ensure that modifications to the memory will
/// eventually be reflected in the original storage.
///
/// \param base - always an address, but possibly an r-value
virtual ManagedValue getMaterialized(SILGenFunction &gen, SILLocation loc,
ManagedValue base,
AccessKind accessKind) &&;
/// Perform a writeback on the property.
///
/// \param base - always an address, but possibly an r-value
virtual void writeback(SILGenFunction &gen, SILLocation loc,
ManagedValue base, ManagedValue temporary,
ArrayRef<SILValue> otherInfo, bool isFinal);
};
inline LogicalPathComponent &PathComponent::asLogical() {
assert(isLogical());
return static_cast<LogicalPathComponent&>(*this);
}
inline const LogicalPathComponent &PathComponent::asLogical() const {
assert(isLogical());
return static_cast<const LogicalPathComponent&>(*this);
}
/// An abstract class for components which translate values in some way.
class TranslationPathComponent : public LogicalPathComponent {
protected:
TranslationPathComponent(LValueTypeData typeData, KindTy kind)
: LogicalPathComponent(typeData, kind) {
assert(isTranslation() &&
"TranslationPathComponent kind isn't value translation");
}
public:
AccessKind getBaseAccessKind(SILGenFunction &gen,
AccessKind kind) const override {
// Always use the same access kind for the base.
return kind;
}
void diagnoseWritebackConflict(LogicalPathComponent *RHS,
SILLocation loc1, SILLocation loc2,
SILGenFunction &gen) override {
// no useful writeback diagnostics at this point
}
ManagedValue get(SILGenFunction &gen, SILLocation loc,
ManagedValue base, SGFContext c) && override;
void set(SILGenFunction &gen, SILLocation loc,
RValue &&value, ManagedValue base) && override;
/// Transform from the original pattern.
virtual ManagedValue translate(SILGenFunction &gen, SILLocation loc,
ManagedValue value,
SGFContext ctx = SGFContext()) && = 0;
/// Transform into the original pattern.
virtual ManagedValue untranslate(SILGenFunction &gen, SILLocation loc,
ManagedValue value,
SGFContext ctx = SGFContext()) && = 0;
};
inline TranslationPathComponent &PathComponent::asTranslation() {
assert(isTranslation());
return static_cast<TranslationPathComponent&>(*this);
}
inline const TranslationPathComponent &PathComponent::asTranslation() const {
assert(isTranslation());
return static_cast<const TranslationPathComponent&>(*this);
}
/// An lvalue represents a reference to storage holding a value
/// of a type, as opposed to an rvalue, which is an actual value
/// of the type.
class LValue {
std::vector<std::unique_ptr<PathComponent>> Path;
public:
LValue() = default;
LValue(const LValue &other) = delete;
LValue(LValue &&other) = default;
LValue &operator=(const LValue &) = delete;
LValue &operator=(LValue &&) = default;
static LValue forAddress(ManagedValue address,
AbstractionPattern origFormalType,
CanType substFormalType);
/// Form a class-reference l-value. Only suitable as the base of
/// very specific member components.
static LValue forClassReference(ManagedValue reference);
bool isValid() const { return !Path.empty(); }
/// Is this lvalue purely physical?
bool isPhysical() const {
assert(isValid());
for (auto &component : Path)
if (!component->isPhysical())
return false;
return true;
}
/// Is the lvalue's final component physical?
bool isLastComponentPhysical() const {
assert(isValid());
return Path.back()->isPhysical();
}
/// Is the lvalue's final component a translation component?
bool isLastComponentTranslation() const {
assert(isValid());
return Path.back()->isTranslation();
}
/// Given that the last component is a translation component,
/// return it.
TranslationPathComponent &getLastTranslationComponent() & {
assert(isLastComponentTranslation());
return Path.back()->asTranslation();
}
/// Given that the last component is a translation component,
/// peel it off.
void dropLastTranslationComponent() & {
assert(isLastComponentTranslation());
Path.pop_back();
}
/// Add a new component at the end of the access path of this lvalue.
template <class T, class... As>
void add(As &&... args) {
Path.emplace_back(new T(std::forward<As>(args)...));
}
/// Add a member component to the access path of this lvalue.
void addMemberComponent(SILGenFunction &gen, SILLocation loc,
AbstractStorageDecl *storage,
ArrayRef<Substitution> subs,
bool isSuper,
AccessKind accessKind,
AccessSemantics accessSemantics,
AccessStrategy accessStrategy,
CanType formalRValueType,
RValue &&indices);
void addMemberVarComponent(SILGenFunction &gen, SILLocation loc,
VarDecl *var,
ArrayRef<Substitution> subs,
bool isSuper,
AccessKind accessKind,
AccessSemantics accessSemantics,
AccessStrategy accessStrategy,
CanType formalRValueType);
void addMemberSubscriptComponent(SILGenFunction &gen, SILLocation loc,
SubscriptDecl *subscript,
ArrayRef<Substitution> subs,
bool isSuper,
AccessKind accessKind,
AccessSemantics accessSemantics,
AccessStrategy accessStrategy,
CanType formalRValueType,
RValue &&indices,
Expr *indexExprForDiagnostics = nullptr);
/// Add a subst-to-orig reabstraction component. That is, given
/// that this l-value trafficks in values following the substituted
/// abstraction pattern, make an l-value trafficking in values
/// following the original abstraction pattern.
void addSubstToOrigComponent(AbstractionPattern origType,
SILType loweredResultType);
/// Add an orig-to-subst reabstraction component. That is, given
/// that this l-value trafficks in values following the original
/// abstraction pattern, make an l-value trafficking in values
/// following the substituted abstraction pattern.
void addOrigToSubstComponent(SILType loweredResultType);
typedef std::vector<std::unique_ptr<PathComponent>>::iterator iterator;
typedef std::vector<std::unique_ptr<PathComponent>>::const_iterator
const_iterator;
iterator begin() { return Path.begin(); }
iterator end() { return Path.end(); }
const_iterator begin() const { return Path.begin(); }
const_iterator end() const { return Path.end(); }
const LValueTypeData &getTypeData() const {
return Path.back()->getTypeData();
}
/// Returns the type-of-rvalue of the logical object referenced by
/// this l-value. Note that this may differ significantly from the
/// type of l-value.
SILType getTypeOfRValue() const { return getTypeData().TypeOfRValue; }
CanType getSubstFormalType() const { return getTypeData().SubstFormalType; }
AbstractionPattern getOrigFormalType() const {
return getTypeData().OrigFormalType;
}
void dump() const;
void print(raw_ostream &OS) const;
};
/// RAII object to enable writebacks for logical lvalues evaluated within the
/// scope, which will be applied when the object goes out of scope.
///
/// A writeback scope is used to limit the extent of a formal access
/// to an l-value, under the rules specified in the accessors
/// proposal. It should be entered at a point where it will conclude
/// at the appropriate instant.
///
/// For example, the rules specify that a formal access for an inout
/// argument begins immediately before the call and ends immediately
/// after it. This can be implemented by pushing a WritebackScope
/// before the formal evaluation of the arguments and popping it
/// immediately after the call. (It must be pushed before the formal
/// evaluation because, in some cases, the formal evaluation of a base
/// l-value will immediately begin a formal access that must end at
/// the same time as that of its projected subobject l-value.)
class WritebackScope {
SILGenFunction *gen;
bool wasInWritebackScope;
size_t savedDepth;
void popImpl();
public:
WritebackScope(SILGenFunction &gen);
~WritebackScope() {
if (gen) {
popImpl();
}
}
bool isPopped() const {
return (gen == nullptr);
}
void pop() {
assert(!isPopped() && "popping an already-popped writeback scope!");
popImpl();
gen = nullptr;
}
WritebackScope(const WritebackScope &) = delete;
WritebackScope &operator=(const WritebackScope &) = delete;
WritebackScope(WritebackScope &&o);
WritebackScope &operator=(WritebackScope &&o);
};
/// RAII object used to enter an inout conversion scope. Writeback scopes formed
/// during the inout conversion scope will be no-ops.
class InOutConversionScope {
SILGenFunction &gen;
public:
InOutConversionScope(SILGenFunction &gen);
~InOutConversionScope();
};
} // end namespace Lowering
} // end namespace swift
#endif