forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFloatingPoint.swift
1206 lines (1060 loc) · 46.9 KB
/
FloatingPoint.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// RUN: rm -rf %t && mkdir -p %t
// RUN: %S/../../utils/line-directive %s -- %target-build-swift -parse-stdlib %s -o %t/a.out
// RUN: %S/../../utils/line-directive %s -- %target-run %t/a.out
// REQUIRES: executable_test
import Swift
// TODO: These should probably subsumed into UnsignedIntegerType or
// another integer protocol. Dave has already done some work here.
public protocol FloatingPointRepresentationType : UnsignedIntegerType {
var leadingZeros: UInt { get }
func <<(left: Self, right: Self) -> Self
func >>(left: Self, right: Self) -> Self
init(_ value: UInt)
}
extension UInt64 : FloatingPointRepresentationType {
public var leadingZeros: UInt {
return UInt(_countLeadingZeros(Int64(bitPattern: self)))
}
}
extension UInt32 : FloatingPointRepresentationType {
public var leadingZeros: UInt {
return UInt64(self).leadingZeros - 32
}
}
// Ewwww? <rdar://problem/20060017>
#if os(OSX) || os(iOS) || os(watchOS) || os(tvOS)
import Darwin
#elseif os(Linux)
import Glibc
#endif
public protocol FloatingPointType : Comparable, SignedNumberType,
IntegerLiteralConvertible,
FloatLiteralConvertible {
/// An unsigned integer type large enough to hold the significand field.
typealias SignificandBits: FloatingPointRepresentationType
/// Positive infinity.
///
/// Compares greater than all finite numbers.
static var infinity: Self { get }
/// Quiet NaN.
///
/// Compares not equal to every value, including itself. Most operations
/// with a `NaN` operand will produce a `NaN` result.
static var NaN: Self { get }
/// NaN with specified `payload`.
///
/// Compares not equal to every value, including itself. Most operations
/// with a `NaN` operand will produce a `NaN` result.
static func NaN(payload bits: SignificandBits, signaling: Bool) -> Self
/// The greatest finite value.
///
/// Compares greater than or equal to all finite numbers, but less than
/// infinity.
static var greatestFiniteMagnitude: Self { get }
// Note -- rationale for "ulp" instead of "epsilon":
// We do not use that name because it is ambiguous at best and misleading
// at worst:
//
// - Historically several definitions of "machine epsilon" have commonly
// been used, which differ by up to a factor of two or so. By contrast
// "ulp" is a term with a specific unambiguous definition.
//
// - Some languages have used "epsilon" to refer to wildly different values,
// such as `leastMagnitude`.
//
// - Inexperienced users often believe that "epsilon" should be used as a
// tolerance for floating-point comparisons, because of the name. It is
// nearly always the wrong value to use for this purpose.
/// The unit in the last place of 1.0.
///
/// This is the weight of the least significant bit of the significand of 1.0,
/// or the positive difference between 1.0 and the next greater representable
/// number.
///
/// This value (or a similar value) is often called "epsilon", "machine
/// epsilon", or "macheps" in other languages.
static var ulp: Self { get }
/// The least positive normal value.
///
/// Compares less than or equal to all positive normal numbers. There may
/// be smaller positive numbers, but they are "subnormal", meaning that
/// they are represented with less precision than normal numbers.
static var leastNormalMagnitude: Self { get }
/// The least positive value.
///
/// Compares less than or equal to all positive numbers, but greater than
/// zero. If the target supports subnormal values, this is smaller than
/// `leastNormalMagnitude`; otherwise (as on armv7), they are equal.
static var leastMagnitude: Self { get }
/// The `signbit`. True for negative numbers, false for positive.
///
/// This is simply the high-order bit in the encoding of `self`, regardless
/// of the encoded value. This *is not* the same thing as `self < 0`.
/// In particular:
///
/// - If `x` is `-0.0`, then `x.signbit` is `true`, but `x < 0` is `false`.
/// - If `x` is `NaN`, then `x.signbit` could be either `true` or `false`,
/// (the signbit of `NaN` is unspecified) but `x < 0` is `false`.
///
/// Implements the IEEE-754 `isSignMinus` operation.
var signbit: Bool { get }
/// The mathematical `exponent`.
///
/// If `x` is a normal floating-point number, then `exponent` is simply the
/// raw encoded exponent interpreted as a signed integer with the exponent
/// bias removed.
///
/// For subnormal numbers, `exponent` is computed as though the exponent
/// range of `Self` were unbounded. In particular, `x.exponent` will
/// be smaller than the minimum normal exponent that can be encoded.
///
/// Other edge cases:
///
/// - If `x` is zero, then `x.exponent` is `Int.min`.
/// - If `x` is +/-infinity or NaN, then `x.exponent` is `Int.max`
///
/// Implements the IEEE-754 `logB` operation.
var exponent: Int { get }
/// The mathematical `significand` (sometimes erroneously called the "mantissa").
///
/// `significand` is computed as though the exponent range of `Self` were
/// unbounded; if `x` is a finite non-zero number, then `x.significand` is
/// in the range `[1,2)`.
///
/// For other values of `x`, `x.significand` is defined as follows:
///
/// - If `x` is zero, then `x.significand` is 0.0.
/// - If `x` is infinity, then `x.signficand` is 1.0.
/// - If `x` is NaN, then `x.significand` is NaN.
///
/// For all floating-point `x`, if we define y by:
///
/// let y = Self(signbit: x.signbit, exponent: x.exponent,
/// significand: x.significand)
///
/// then `y` is equivalent to `x`, meaning that `y` is `x` canonicalized.
/// For types that do not have non-canonical encodings, this implies that
/// `y` has the same encoding as `x`. Note that this is a stronger
/// statement than `x == y`, as it implies that both the sign of zero and
/// the payload of NaN are preserved.
var significand: Self { get }
/// Combines a signbit, exponent, and signficand to produce a floating-point
/// datum.
///
/// In common usage, `significand` will generally be a number in the range
/// `[1,2)`, but this is not required; the initializer supports any valid
/// floating-point datum. The result is:
///
/// `(-1)^signbit * signficand * 2^exponent`
///
/// (where ^ denotes the mathematical operation of exponentiation) computed
/// as if by a single correctly-rounded floating-point operation. If this
/// value is outside the representable range of the type, overflow or
/// underflow will occur, and zero, a subnormal value, or infinity will be
/// returned, as with any basic operation. Other edge cases:
///
/// - If `significand` is zero or infinite, the result is zero or infinite,
/// regardless of the value of `exponent`.
/// - If `significand` is NaN, the result is NaN.
///
/// Note that for any floating-point datum `x` the result of
///
/// `Self(signbit: x.signbit,
/// exponent: x.exponent,
/// significand: x.significand)`
///
/// is "the same" as `x` (if `x` is NaN, then this result is also `NaN`, but
/// it might be a different NaN).
///
/// Because of these properties, this initializer also implements the
/// IEEE-754 `scaleB` operation.
init(signbit: Bool, exponent: Int, significand: Self)
/// The unit in the last place of `self`.
///
/// This is the value of the least significant bit in the significand of
/// `self`. For most numbers `x`, this is the difference between `x` and
/// the next greater (in magnitude) representable number. There are some
/// edge cases to be aware of:
///
/// - `greatestFiniteMagnitude.ulp` is a finite number, even though
/// the next greater respresentable value is `infinity`.
/// - `x.ulp` is `NaN` if `x` is not a finite number.
/// - If `x` is very small in magnitude, then `x.ulp` may be a subnormal
/// number. On targets that do not support subnormals, `x.ulp` may be
/// flushed to zero.
var ulp: Self { get }
// TODO: IEEE-754 requires the following operations for every FP type.
// They need bindings (names) for Swift. Some of them map to existing
// C library functions, so the default choice would be to use the C
// names, but we should consider if other names would be more appropriate
// for Swift.
//
// For now I have simply used the IEEE-754 names to track them.
//
// The C bindings for these operations are:
// roundToIntegralTiesToEven roundeven (n1778)
// roundToIntegralTiesAway round (c99)
// roundToIntegralTowardZero trunc (c99)
// roundToIntegralTowardPositive ceil (c90)
// roundToIntegralTowardNegative floor (c90)
//
// Also TBD: should these only be available as free functions?
/// Rounds `self` to nearest integral value, with halfway cases rounded
/// to the even integer.
func roundToIntegralTiesToEven() -> Self
/// Rounds `self` to the nearest integral value, with halfway cases rounded
/// away from zero.
func roundToIntegralTiesToAway() -> Self
/// Rounds `self` to an integral value towards zero.
func roundToIntegralTowardZero() -> Self
/// Rounds `self` to an integral value toward positive infinity.
func roundToIntegralTowardPositive() -> Self
/// Rounds `self` to an integral value toward negative infinity.
func roundToIntegralTowardNegative() -> Self
// TODO: roundToIntegralExact requires a notion of flags and of
// rounding modes, which require language design.
// TODO: should nextUp and nextDown be computed properties or funcs?
// For me, these sit right on the edge in terms of what makes sense.
/// The least `Self` that compares greater than `self`.
///
/// - If `x` is `-infinity`, then `x.nextUp` is `-greatestMagnitude`.
/// - If `x` is `-leastMagnitude`, then `x.nextUp` is `-0.0`.
/// - If `x` is zero, then `x.nextUp` is `leastMagnitude`.
/// - If `x` is `greatestMagnitude`, then `x.nextUp` is `infinity`.
/// - If `x` is `infinity` or `NaN`, then `x.nextUp` is `x`.
var nextUp: Self { get }
/// The greatest `Self` that compares less than `self`.
///
/// `x.nextDown` is equivalent to `-(-x).nextUp`
var nextDown: Self { get }
// TODO: IEEE-754 defines the following semantics for remainder(x, y).
//
// This operation differs from what is currently provided by the %
// operator, which implements fmod, not remainder. The difference is
// that fmod is the remainder of truncating division (the sign matches
// that of x and the magnitude is in [0, y)), whereas remainder is what
// results from round-to-nearest division (it lies in [y/2, y/2]).
//
// I would prefer that % implement the remainder operation, but this is
// a fairly significant change to the language that needs discussion.
// Both operations should be probably be available, anyway.
/// Remainder of `x` divided by `y`.
///
/// `remainder(x,y)` is defined for finite `x` and `y` by the mathematical
/// relation `r = x - yn`, where `n` is the integer nearest to the exact
/// number (*not* the floating-point value) `x/y`. If `x/y` is exactly
/// halfway between two integers, `n` is even. `remainder` is always
/// exact, and therefore is not affected by the rounding mode.
///
/// If `remainder(x,y)` is zero, it has the same sign as `x`. If `y` is
/// infinite, then `remainder(x,y)` is `x`.
static func remainder(x: Self, _ y: Self) -> Self
// TODO: The IEEE-754 "minNumber" and "maxNumber" operations should
// probably be provided by the min and max generic free functions, but
// there is some question of how best to do that. As an initial
// binding, they are provided as static functions.
//
// We will end up naming the static functions something else
// (if we keep them at all) to avoid confusion with Int.min, etc.
/// The minimum of `x` and `y`.
///
/// Returns `x` if `x < y`, `y` if `y < x`, and whichever of `x` or `y`
/// is a number if the other is NaN. The result is NaN only if both
/// arguments are NaN.
static func min(x: Self, _ y: Self) -> Self
/// The maximum of `x` and `y`.
///
/// Returns `x` if `x > y`, `y` if `y > x`, and whichever of `x` or `y`
/// is a number if the other is NaN. The result is NaN only if both
/// arguments are NaN.
static func max(x: Self, _ y: Self) -> Self
// Note: IEEE-754 calls these "minNumMag" and "maxNumMag". C (n1778)
// uses "fminmag" and "fmaxmag". Neither of these strike me as very
// good names. I prefer minMagnitude and maxMagnitude, which are
// clear without being too wordy.
/// Whichever of `x` or `y` has lesser magnitude.
///
/// Returns `x` if `|x| < |y|`, `y` if `|y| < |x|`, and whichever of
/// `x` or `y` is a number if the other is NaN. The result is NaN
/// only if both arguments are NaN.
static func minMagnitude(left: Self, _ right: Self) -> Self
/// Whichever of `x` or `y` has greater magnitude.
///
/// Returns `x` if `|x| > |y|`, `y` if `|y| > |x|`, and whichever of
/// `x` or `y` is a number if the other is NaN. The result is NaN
/// only if both arguments are NaN.
static func maxMagnitude(left: Self, _ right: Self) -> Self
func +(x: Self, y: Self) -> Self
func -(x: Self, y: Self) -> Self
func *(x: Self, y: Self) -> Self
func /(x: Self, y: Self) -> Self
// Implementation details of formatOf operations.
static func _addStickyRounding(x: Self, _ y: Self) -> Self
static func _mulStickyRounding(x: Self, _ y: Self) -> Self
static func _divStickyRounding(x: Self, _ y: Self) -> Self
static func _sqrtStickyRounding(x: Self) -> Self
static func _mulAddStickyRounding(x: Self, _ y: Self, _ z: Self) -> Self
// TODO: do we actually want to provide remainder as an operator? It's
// definitely not obvious to me that we should, but we have until now.
// See further discustion with func remainder(x,y) above.
func %(x: Self, y: Self) -> Self
// Conversions from all integer types.
init(_ value: Int8)
init(_ value: Int16)
init(_ value: Int32)
init(_ value: Int64)
init(_ value: Int)
init(_ value: UInt8)
init(_ value: UInt16)
init(_ value: UInt32)
init(_ value: UInt64)
init(_ value: UInt)
init(_ value: SignificandBits)
// Conversions from all floating-point types.
init(_ value: Float)
init(_ value: Double)
#if arch(i386) || arch(x86_64)
init(_ value: Float80)
#endif
// TODO: where do conversions to/from string live? IEEE-754 requires
// conversions to/from decimal character and hexadecimal character
// sequences.
/// Implements the IEEE-754 copy operation.
prefix func +(value: Self) -> Self
// IEEE-754 negate operation is prefix `-`, provided by SignedNumberType.
// TODO: ensure that the optimizer is able to produce a simple xor for -.
// IEEE-754 abs operation is the free function abs( ), provided by
// SignedNumberType. TODO: ensure that the optimizer is able to produce
// a simple and or bic for abs( ).
// TODO: should this be the free function copysign(x, y) instead, a la C?
/// Returns datum with magnitude of `self` and sign of `from`.
///
/// Implements the IEEE-754 copysign operation.
func copysign(from: Self) -> Self
// TODO: "signaling/quiet" comparison predicates if/when we have a model for
// floating-point flags and exceptions in Swift.
/// The floating point "class" of this datum.
///
/// Implements the IEEE-754 `class` operation.
var floatingPointClass: FloatingPointClassification { get }
/// True if and only if `self` is zero.
var isZero: Bool { get }
/// True if and only if `self` is subnormal.
///
/// A subnormal number does not use the full precision available to normal
/// numbers of the same format. Zero is not a subnormal number.
var isSubnormal: Bool { get }
/// True if and only if `self` is normal.
///
/// A normal number uses the full precision available in the format. Zero
/// is not a normal number.
var isNormal: Bool { get }
/// True if and only if `self` is finite.
///
/// If `x.isFinite` is `true`, then one of `x.isZero`, `x.isSubnormal`, or
/// `x.isNormal` is also `true`, and `x.isInfinite` and `x.isNaN` are
/// `false`.
var isFinite: Bool { get }
/// True if and only if `self` is infinite.
///
/// Note that `isFinite` and `isInfinite` do not form a dichotomy, because
/// they are not total. If `x` is `NaN`, then both properties are `false`.
var isInfinite: Bool { get }
/// True if and only if `self` is NaN ("not a number").
var isNaN: Bool { get }
/// True if and only if `self` is a signaling NaN.
var isSignaling: Bool { get }
/// True if and only if `self` is canonical.
///
/// Every floating-point datum of type Float or Double is canonical, but
/// non-canonical values of type Float80 exist. These are known as
/// "pseudo-denormal", "unnormal", "pseudo-infinity", and "pseudo-nan".
/// (https://en.wikipedia.org/wiki/Extended_precision#x86_Extended_Precision_Format)
var isCanonical: Bool { get }
/// A total order relation on all values of type Self (including NaN).
func totalOrder(other: Self) -> Bool
/// A total order relation that compares magnitudes.
func totalOrderMagnitude(other: Self) -> Bool
// Note: this operation is *not* required by IEEE-754, but it is an oft-
// requested feature. TBD: should +0 and -0 be equivalent? Substitution
// property of equality says no.
//
// More adventurous (probably crazy) thought: we *could* make this (or
// something like it) the default behavior of the == operator, and make
// IEEE-754 equality be the function. IEEE-754 merely dictates that
// certain operations be available, not what their bindings in a
// language actually are. Their are two problems with this:
//
// - it violates the hell out of the principle of least surprise,
// given that programmers have been conditioned by years of using
// other languages.
//
// - it would introduce a gratuitous minor inefficiency to most
// code on the hardware we have today, where IEEE-754 equality is
// generally a single test, and "equivalent" is not.
//
// Still, I want to at least make note of the possibility.
/// An equivalence relation on all values of type Self (including NaN).
///
/// Unlike `==`, this relation is a formal equivalence relation. In
/// particular, it is reflexive. All NaNs compare equal to each other
/// under this relation.
func equivalent(other: Self) -> Bool
}
// Features of FloatingPointType that can be implemented without any
// dependence on the internals of the type.
extension FloatingPointType {
public static var NaN: Self { return NaN(payload: 0, signaling: false) }
public static var ulp: Self { return Self(1).ulp }
public func roundToIntegralTiesToEven() -> Self {
fatalError("TODO once roundeven functions are provided in math.h")
}
public static func minMagnitude(left: Self, _ right: Self) -> Self {
fatalError("TODO once fminmag functions are available in libm")
}
public static func maxMagnitude(left: Self, _ right: Self) -> Self {
fatalError("TODO once fmaxmag functions are available in libm")
}
public static func _addStickyRounding(x: Self, _ y: Self) -> Self {
fatalError("TODO: Unimplemented")
}
public static func _mulStickyRounding(x: Self, _ y: Self) -> Self {
fatalError("TODO: Unimplemented")
}
public static func _divStickyRounding(x: Self, _ y: Self) -> Self {
fatalError("TODO: Unimplemented")
}
public static func _sqrtStickyRounding(x: Self) -> Self {
fatalError("TODO: Unimplemented")
}
public static func _mulAddStickyRounding(x: Self, _ y: Self, _ z: Self) -> Self {
fatalError("TODO: Unimplemented")
}
public var floatingPointClass: FloatingPointClassification {
if isSignaling { return .SignalingNaN }
if isNaN { return .QuietNaN }
if isInfinite { return signbit ? .NegativeInfinity : .PositiveInfinity }
if isNormal { return signbit ? .NegativeNormal : .PositiveNormal }
if isSubnormal { return signbit ? .NegativeSubnormal : .PositiveSubnormal }
return signbit ? .NegativeZero : .PositiveZero
}
public func totalOrderMagnitude(other: Self) -> Bool {
return abs(self).totalOrder(abs(other))
}
public func equivalent(other: Self) -> Bool {
if self.isNaN && other.isNaN { return true }
if self.isZero && other.isZero { return self.signbit == other.signbit }
return self == other
}
}
public protocol BinaryFloatingPointType: FloatingPointType {
/// Values that parametrize the type:
static var _exponentBitCount: UInt { get }
static var _fractionalBitCount: UInt { get }
/// The raw encoding of the exponent field of the floating-point datum.
var exponentBitPattern: UInt { get }
/// The raw encoding of the significand field of the floating-point datum.
var significandBitPattern: SignificandBits { get }
/// The least-magnitude member of the binade of `self`.
///
/// If `x` is `+/-signficand * 2^exponent`, then `x.binade` is
/// `+/- 2^exponent`; i.e. the floating point number with the same sign
/// and exponent, but a significand of 1.0.
var binade: Self { get }
/// Combines a signbit, exponent and signficand bit patterns to produce a
/// floating-point datum. No error-checking is performed by this function;
/// the bit patterns are simply concatenated to produce the floating-point
/// encoding of the result.
init(signbit: Bool,
exponentBitPattern: UInt,
significandBitPattern: SignificandBits)
init<T: BinaryFloatingPointType>(_ other: T)
// TODO: IEEE-754 requires that the six basic operations (add, subtract,
// multiply, divide, square root, and FMA) be provided from all source
// formats to all destination formats, with a single rounding. In order
// to satisfy this requirement (which I believe we should), we'll need
// something like the following.
//
// fusedMultiplyAdd needs naming attention for Swift. The C name
// fma(x,y,z) might be too terse for the Swift standard library, but
// fusedMultiplyAdd is awfully verbose. mulAdd(x, y, z), perhaps?
// Or we could go full Obj-C style and do mul(_:, _:, add:), I suppose.
//
// While `sqrt` and `fma` have traditionally been part of the
// math library in C-derived languages, they rightfully belong as part
// of the base FloatingPointType protocol in Swift, because they are
// IEEE-754 required operations, like + or *.
/// The sum of `x` and `y`, correctly rounded to `Self`.
static func add<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self
/// The difference of `x` and `y`, correctly rounded to `Self`.
static func sub<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self
/// The product of `x` and `y`, correctly rounded to `Self`.
static func mul<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self
/// The quotient of `x` and `y`, correctly rounded to `Self`.
static func div<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self
/// The square root of `x`, correctly rounded to `Self`.
static func sqrt<X: BinaryFloatingPointType>(x: X) -> Self
/// (x*y) + z correctly rounded to `Self`.
static func mulAdd<X: BinaryFloatingPointType, Y: BinaryFloatingPointType, Z: BinaryFloatingPointType>(x: X, _ y: Y, _ z: Z) -> Self
}
extension BinaryFloatingPointType {
static var _exponentBias: UInt {
return Self._infinityExponent >> 1
}
static var _infinityExponent: UInt {
return 1 << _exponentBitCount - 1
}
static var _integralBitMask: SignificandBits {
return 1 << SignificandBits(UIntMax(_fractionalBitCount))
}
static var _fractionalBitMask: SignificandBits {
return _integralBitMask - 1
}
static var _quietBitMask: SignificandBits {
return _integralBitMask >> 1
}
static var _payloadBitMask: SignificandBits {
return _quietBitMask - 1
}
public static var infinity: Self {
return Self(signbit: false,
exponentBitPattern:_infinityExponent,
significandBitPattern: 0)
}
public static func NaN(payload bits: SignificandBits, signaling: Bool) -> Self {
var significand = bits & _payloadBitMask
if signaling {
// Ensure at least one bit is set in payload, otherwise we will get
// an infinity instead of NaN.
if significand == 0 {
significand = _quietBitMask >> 1
}
} else {
significand = significand | _quietBitMask
}
return Self(signbit: false,
exponentBitPattern: _infinityExponent,
significandBitPattern: significand)
}
public static var greatestFiniteMagnitude: Self {
return Self(signbit: false,
exponentBitPattern: _infinityExponent - 1,
significandBitPattern: _fractionalBitMask)
}
public static var leastNormalMagnitude: Self {
return Self(signbit: false, exponentBitPattern: 1, significandBitPattern: 0)
}
public static var leastMagnitude: Self {
#if arch(arm)
return .leastNormalMagnitude
#else
return Self(signbit: false, exponentBitPattern: 0, significandBitPattern: 1)
#endif
}
public var exponent: Int {
if !isFinite { return .max }
let provisional = Int(exponentBitPattern) - Int(Self._exponentBias)
if isNormal { return provisional }
if isZero { return .min }
let shift = significandBitPattern.leadingZeros - Self._fractionalBitMask.leadingZeros
return provisional - Int(shift)
}
public var significand: Self {
if isNaN { return self }
if isNormal {
return Self(Self._integralBitMask | significandBitPattern) * Self.ulp
}
if isZero { return 0 }
let shift = 1 + significandBitPattern.leadingZeros - Self._fractionalBitMask.leadingZeros
return Self(significandBitPattern << SignificandBits(shift)) * Self.ulp
}
public init(signbit: Bool, exponent: Int, significand: Self) {
var result = significand
if signbit { result = -result }
if significand.isFinite && !significand.isZero {
var clamped = exponent
if clamped < Self.leastNormalMagnitude.exponent {
clamped = max(clamped, 3*Self.leastNormalMagnitude.exponent)
while clamped < Self.leastNormalMagnitude.exponent {
result = result * Self.leastNormalMagnitude
clamped += Self.leastNormalMagnitude.exponent
}
}
else if clamped > Self.greatestFiniteMagnitude.exponent {
clamped = min(clamped, 3*Self.greatestFiniteMagnitude.exponent)
while clamped > Self.greatestFiniteMagnitude.exponent {
result = result * Self.greatestFiniteMagnitude.binade
clamped -= Self.greatestFiniteMagnitude.exponent
}
}
let scale = Self(signbit: false,
exponentBitPattern: UInt(Int(Self._exponentBias) + clamped),
significandBitPattern: Self._integralBitMask)
result = result * scale
}
self = result
}
public var ulp: Self {
if !isFinite { return .NaN }
if exponentBitPattern > Self._fractionalBitCount {
// ulp is normal, so we directly manifest its exponent and use a
// significand of 1.
let ulpExponent = exponentBitPattern - Self._fractionalBitCount
return Self(signbit: false, exponentBitPattern: ulpExponent, significandBitPattern: 0)
}
if exponentBitPattern >= 1 {
// self is normal, but ulp is subnormal; we need to compute a shift
// to apply to the significand.
let ulpShift = SignificandBits(exponentBitPattern - 1)
return Self(signbit: false, exponentBitPattern: 0, significandBitPattern: 1 << ulpShift)
}
return Self(signbit:false, exponentBitPattern:0, significandBitPattern:1)
}
public var nextUp: Self {
if isNaN { return self }
if signbit {
if significandBitPattern == 0 {
if exponentBitPattern == 0 { return Self.leastMagnitude }
return Self(signbit: true,
exponentBitPattern: exponentBitPattern - 1,
significandBitPattern: Self._fractionalBitMask)
}
return Self(signbit: true,
exponentBitPattern: exponentBitPattern,
significandBitPattern: significandBitPattern - 1)
}
if isInfinite { return self }
if significandBitPattern == Self._fractionalBitMask {
return Self(signbit: false,
exponentBitPattern: exponentBitPattern + 1,
significandBitPattern: 0)
}
return Self(signbit: false,
exponentBitPattern: exponentBitPattern,
significandBitPattern: significandBitPattern + 1)
}
public var nextDown: Self { return -(-self).nextUp }
public var binade: Self {
if !isFinite { return .NaN }
if isNormal {
return Self(signbit: false, exponentBitPattern: exponentBitPattern,
significandBitPattern: Self._integralBitMask)
}
if isZero { return 0 }
let shift = significandBitPattern.leadingZeros - Self._integralBitMask.leadingZeros
let significand = Self._integralBitMask >> SignificandBits(shift)
return Self(signbit: false, exponentBitPattern: 0,
significandBitPattern: significand)
}
public static func add<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self {
if X._fractionalBitCount < Y._fractionalBitCount { return add(y, x) }
if X._fractionalBitCount <= Self._fractionalBitCount { return Self(x) + Self(y) }
return Self(X._addStickyRounding(x, X(y)))
}
public static func sub<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self {
return Self.add(x, -y)
}
public static func mul<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self {
if X._fractionalBitCount < Y._fractionalBitCount { return mul(y, x) }
if X._fractionalBitCount <= Self._fractionalBitCount { return Self(x) * Self(y) }
return Self(X._mulStickyRounding(x, X(y)))
}
public static func div<X: BinaryFloatingPointType, Y: BinaryFloatingPointType>(x: X, _ y: Y) -> Self {
if X._fractionalBitCount <= Self._fractionalBitCount &&
Y._fractionalBitCount <= Self._fractionalBitCount { return Self(x) / Self(y) }
if X._fractionalBitCount < Y._fractionalBitCount { return Self(Y._divStickyRounding(Y(x), y)) }
return Self(X._divStickyRounding(x, X(y)))
}
public static func sqrt<X: BinaryFloatingPointType>(x: X) -> Self {
if X._fractionalBitCount <= Self._fractionalBitCount { return sqrt(Self(x)) }
return Self(X._sqrtStickyRounding(x))
}
public static func mulAdd<X: BinaryFloatingPointType, Y: BinaryFloatingPointType, Z: BinaryFloatingPointType>(x: X, _ y: Y, _ z: Z) -> Self {
if X._fractionalBitCount < Y._fractionalBitCount { return mulAdd(y, x, z) }
if X._fractionalBitCount <= Self._fractionalBitCount &&
Z._fractionalBitCount <= Self._fractionalBitCount { return mulAdd(Self(x), Self(y), Self(z)) }
if X._fractionalBitCount < Z._fractionalBitCount { return Self(Z._mulAddStickyRounding(Z(x), Z(y), z)) }
return Self(X._mulAddStickyRounding(x, X(y), X(z)))
}
public var absoluteValue: Self {
return Self(signbit: false, exponentBitPattern: exponentBitPattern,
significandBitPattern: significandBitPattern)
}
public func copysign(from: Self) -> Self {
return Self(signbit: from.signbit, exponentBitPattern: exponentBitPattern,
significandBitPattern: significandBitPattern)
}
public var isZero: Bool {
return exponentBitPattern == 0 && significandBitPattern == 0
}
public var isSubnormal: Bool {
return exponentBitPattern == 0 && significandBitPattern != 0
}
public var isNormal: Bool {
return exponentBitPattern > 0 && isFinite
}
public var isFinite: Bool {
return exponentBitPattern < Self._infinityExponent
}
public var isInfinite: Bool {
return exponentBitPattern == Self._infinityExponent &&
significandBitPattern == Self._integralBitMask
}
public var isNaN: Bool {
return exponentBitPattern == Self._infinityExponent && !isInfinite
}
public var isSignaling: Bool {
return isNaN && (significandBitPattern & Self._quietBitMask == 0)
}
public var isCanonical: Bool { return true }
public func totalOrder(other: Self) -> Bool {
// Every negative-signed value (even NaN) is less than every positive-
// signed value, so if the signs do not match, we simply return the
// signbit of self.
if signbit != other.signbit { return signbit }
// Signbits match; look at exponents.
if exponentBitPattern > other.exponentBitPattern { return signbit }
if exponentBitPattern < other.exponentBitPattern { return !signbit }
// Signs and exponents match, look at significands.
if significandBitPattern > other.significandBitPattern { return signbit }
if significandBitPattern < other.significandBitPattern { return !signbit }
return true
}
}
public protocol FloatingPointInterchangeType: FloatingPointType {
/// An unsigned integer type used to represent floating-point encodings.
typealias BitPattern: FloatingPointRepresentationType
/// Interpret `encoding` as a little-endian encoding of `Self`.
init(littleEndian encoding: BitPattern)
/// Interpret `encoding` as a big-endian encoding of `Self`.
init(bigEndian encoding: BitPattern)
/// Get the little-endian encoding of `self` as an integer.
var littleEndian: BitPattern { get }
/// Get the big-endian encoding of `self` as an integer.
var bigEndian: BitPattern { get }
}
extension FloatingPointInterchangeType {
public init(littleEndian encoding: BitPattern) {
#if arch(i386) || arch(x86_64) || arch(arm) || arch(arm64)
self = unsafeBitCast(encoding, Self.self)
#else
_UnsupportedArchitectureError()
#endif
}
public init(bigEndian encoding: BitPattern) {
fatalError("TODO: with low-level generic integer type support for bswap.")
}
public var littleEndian: BitPattern {
#if arch(i386) || arch(x86_64) || arch(arm) || arch(arm64)
return unsafeBitCast(self, BitPattern.self)
#else
_UnsupportedArchitectureError()
#endif
}
public var bigEndian: BitPattern {
fatalError("TODO: with low-level generic integer type support for bswap.")
}
}
extension Float : BinaryFloatingPointType, FloatingPointInterchangeType {
var _representation: UInt32 { return unsafeBitCast(self, UInt32.self) }
public typealias SignificandBits = UInt32
public typealias BitPattern = UInt32
public static var _fractionalBitCount: UInt { return 23 }
public static var _exponentBitCount: UInt { return 8 }
public var signbit: Bool { return _representation >> 31 == 1 }
public var exponentBitPattern: UInt { return UInt(_representation >> 23) & 0xff }
public var significandBitPattern: SignificandBits { return _representation & Float._fractionalBitMask }
public init(signbit: Bool, exponentBitPattern: UInt, significandBitPattern: SignificandBits) {
let sign = SignificandBits(signbit ? 1 : 0) << 31
let exponent = SignificandBits(exponentBitPattern) << 23
let _representation = sign | exponent | significandBitPattern
self = unsafeBitCast(_representation, Float.self)
}
public init<T: BinaryFloatingPointType>(_ other: T) {
// rdar://16980851 #if does not work with 'switch'
#if arch(i386) || arch(x86_64)
switch other {
case let f as Float:
self = f
case let d as Double:
self = Float(d)
case let ld as Float80:
self = Float(ld)
default:
fatalError()
}
#else
switch other {
case let f as Float:
self = f
case let d as Double:
self = Float(d)
default:
fatalError()
}
#endif
}
public func roundToIntegralTiesToAway() -> Float { return roundf(self) }
public func roundToIntegralTowardZero() -> Float { return truncf(self) }
public func roundToIntegralTowardPositive() -> Float { return ceilf(self) }
public func roundToIntegralTowardNegative() -> Float { return floorf(self) }
public static func remainder(left: Float, _ right: Float) -> Float { return remainderf(left, right) }
public static func min(left: Float, _ right: Float) -> Float { return fminf(left, right) }
public static func max(left: Float, _ right: Float) -> Float { return fmaxf(left, right) }
public static func sqrt(x: Float) -> Float { return sqrtf(x) }
}
extension Double : BinaryFloatingPointType {
var _representation: UInt64 { return unsafeBitCast(self, UInt64.self) }
public typealias SignificandBits = UInt64
public static var _fractionalBitCount: UInt { return 52 }
public static var _exponentBitCount: UInt { return 11 }
public var signbit: Bool { return _representation >> 63 == 1 }
public var exponentBitPattern: UInt { return UInt(_representation >> 52) & 0x7ff }
public var significandBitPattern: SignificandBits { return _representation & Double._fractionalBitMask }
public init(signbit: Bool, exponentBitPattern: UInt, significandBitPattern: SignificandBits) {
let sign = SignificandBits(signbit ? 1 : 0) << 63
let exponent = SignificandBits(exponentBitPattern) << 52
let _representation = sign | exponent | significandBitPattern
self = unsafeBitCast(_representation, Double.self)
}
public init<T: BinaryFloatingPointType>(_ other: T) {
// rdar://16980851 #if does not work with 'switch' cases
#if arch(i386) || arch(x86_64)
switch other {
case let f as Float:
self = Double(f)
case let d as Double:
self = d
case let ld as Float80:
self = Double(ld)
default:
fatalError()
}
#else
switch other {
case let f as Float:
self = Double(f)
case let d as Double:
self = d
default:
fatalError()
}
#endif
}
public func roundToIntegralTiesToAway() -> Double { return round(self) }
public func roundToIntegralTowardZero() -> Double { return trunc(self) }
public func roundToIntegralTowardPositive() -> Double { return ceil(self) }
public func roundToIntegralTowardNegative() -> Double { return floor(self) }
public static func remainder(left: Double, _ right: Double) -> Double { return remainder(left, right) }
public static func min(left: Double, _ right: Double) -> Double { return fmin(left, right) }
public static func max(left: Double, _ right: Double) -> Double { return fmax(left, right) }
}
#if arch(i386) || arch(x86_64)
extension Float80 : BinaryFloatingPointType {
// Internal implementation details
struct _Float80Representation {
var explicitSignificand: UInt64
var signAndExponent: UInt16
var _padding: (UInt16, UInt16, UInt16) = (0, 0, 0)
var signbit: Bool { return signAndExponent >> 15 == 1 }
var exponentBitPattern: UInt { return UInt(signAndExponent) & 0x7fff }
init(explicitSignificand: UInt64, signAndExponent: UInt16) {
self.explicitSignificand = explicitSignificand
self.signAndExponent = signAndExponent
}
}
var _representation: _Float80Representation {
return unsafeBitCast(self, _Float80Representation.self)
}
// Public requirements
public typealias SignificandBits = UInt64