This file documents any backwards-incompatible changes in Airflow and assists users migrating to a new version.
Table of Contents generated with DocToc
- Step 1: Upgrade to Python 3
- Step 2: Upgrade to Airflow 1.10.14 (a.k.a our "bridge" release)
- Step 3: Install and run the Upgrade check scripts
- Step 4: Set Operators to Backport Providers
- Step 5: Upgrade Airflow DAGs
- Step 6: Upgrade KubernetesExecutor settings
- Appendix
NOTE!
On November 2020, new version of PIP (20.3) has been released with a new, 2020 resolver. This resolver
does not yet work with Apache Airflow and might leads to errors in installation - depends on your choice
of extras. In order to install Airflow you need to either downgrade pip to version 20.2.4
pip upgrade --pip==20.2.4
or, in case you use Pip 20.3, you need to add option
--use-deprecated legacy-resolver
to your pip install command.
Airflow 1.10 will be the last release series to support Python 2. Airflow 2.0.0 will require Python 3.6+.
If you have a specific task that still requires Python 2 then you can use the PythonVirtualenvOperator for this.
For a list of breaking changes between Python 2 and Python 3, please refer to this handy blog from the CouchBaseDB team.
To minimize friction for users upgrading from Airflow 1.10 to Airflow 2.0 and beyond, a "bridge" release and final 1.10 version will be made available. Airflow 1.10.14 includes support for various critical features that make it easy for users to test DAGs and make sure they're Airflow 2.0 compatible without forcing breaking changes and disrupting existing workflows. We strongly recommend that all users upgrading to Airflow 2.0 first upgrade to Airflow 1.10.14.
Features in 1.10.14 include:
-
All breaking DAG and architecture changes of Airflow 2.0 have been backported to Airflow 1.10.14. This backward-compatibility does not mean that 1.10.14 will process these DAGs the same way as Airflow 2.0. What this does mean is that all Airflow 2.0 compatible DAGs will work in Airflow 1.10.14. Instead, this backport will give users time to modify their DAGs over time without any service disruption.
-
We have backported the
pod_template_file
capability for the KubernetesExecutor as well as a script that will generate apod_template_file
based on yourairflow.cfg
settings. To generate this file simply run the following command:airflow generate_pod_template -o <output file path>
Once you have performed this step, simply write out the file path to this file in the
pod_template_file
section of thekubernetes
section of yourairflow.cfg
-
The new CLI commands with the updated command syntax have also been backported to Airflow 1.10.14. This gives users the time to modify their scripts which invoke these commands to be compatible with Airflow 2.0, so that the upgrade to 2.0 does not have disruption with invoking services. For example, in Airflow 1.10.x, the CLI command syntax for listing DAGs has been the following command:
airflow list_dags
However, in Airflow 2.0, the CLI command is now:
airflow dags list
Both forms of the CLI command are available in 1.10.14 to assist in the changes to scripts which invoke Airflow CLI commands.
After upgrading to Airflow 1.10.14, we recommend that you install the "upgrade check" scripts. These scripts will read through your airflow.cfg
and all of your Dags and will give a detailed report of all changes required before upgrading. We are testing this script diligently, and our goal is that any Airflow setup that can pass these tests will be able to upgrade to 2.0 without any issues.
pip install apache-airflow-upgrade-check
Once this is installed, please run the upgrade check script.
airflow upgrade_check
Now that you are set up in airflow 1.10.14 with python a 3.6+ environment, you are ready to start porting your DAGs to Airfow 2.0 compliance!
The most important step in this transition is also the easiest step to do in pieces. All Airflow 2.0 operators are backwards compatible with Airflow 1.10
using the backport providers service. In your own time, you can transition to using these backport-providers
by pip installing the provider via pypi
and changing the import path.
NOTE!!
On November 2020, new version of PIP (20.3) has been released with a new, 2020 resolver. This resolver
does not yet work with Apache Airflow and might leads to errors in installation - depends on your choice
of extras. In order to install Airflow you need to either downgrade pip to version 20.2.4
pip upgrade --pip==20.2.4
or, in case you use Pip 20.3, you need to add option
--use-deprecated legacy-resolver
to your pip install command.
For example: While historically you might have imported the DockerOperator in this fashion:
from airflow.operators.docker_operator import DockerOperator
You would now run this command to import the provider:
pip install apache-airflow-backport-providers-docker
and then import the operator with this path:
from airflow.providers.docker.operators.docker import DockerOperator
Note that the backport provider packages are just backports of the provider packages compatible with Airflow 2.0. Those provider packages are installed automatically when you install airflow with extras. For example:
pip install airflow[docker]
automatically installs the apache-airflow-providers-docker
package.
But you can manage/upgrade remove provider packages separately from the airflow core.
Prior to Airflow 2.0 Jinja Templates would permit the use of undefined variables. They would render as an empty string, with no indication to the user an undefined variable was used. With this release, any template rendering involving undefined variables will fail the task, as well as displaying an error in the UI when rendering.
The behavior can be reverted when instantiating a DAG.
import jinja2
dag = DAG('simple_dag', template_undefined=jinja2.Undefined)
Much like the KubernetesExecutor
, the KubernetesPodOperator
will no longer take Airflow custom classes and will
instead expect either a pod_template yaml file, or kubernetes.client.models
objects.
The one notable exception is that we will continue to support the airflow.kubernetes.secret.Secret
class.
Whereas previously a user would import each individual class to build the pod as so:
from airflow.kubernetes.pod import Port
from airflow.kubernetes.volume import Volume
from airflow.kubernetes.secret import Secret
from airflow.kubernetes.volume_mount import VolumeMount
volume_config = {
'persistentVolumeClaim': {
'claimName': 'test-volume'
}
}
volume = Volume(name='test-volume', configs=volume_config)
volume_mount = VolumeMount('test-volume',
mount_path='/root/mount_file',
sub_path=None,
read_only=True)
port = Port('http', 80)
secret_file = Secret('volume', '/etc/sql_conn', 'airflow-secrets', 'sql_alchemy_conn')
secret_env = Secret('env', 'SQL_CONN', 'airflow-secrets', 'sql_alchemy_conn')
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo", "10"],
labels={"foo": "bar"},
secrets=[secret_file, secret_env],
ports=[port],
volumes=[volume],
volume_mounts=[volume_mount],
name="airflow-test-pod",
task_id="task",
affinity=affinity,
is_delete_operator_pod=True,
hostnetwork=False,
tolerations=tolerations,
configmaps=configmaps,
init_containers=[init_container],
priority_class_name="medium",
)
Now the user can use the kubernetes.client.models
class as a single point of entry for creating all k8s objects.
from kubernetes.client import models as k8s
from airflow.kubernetes.secret import Secret
configmaps = ['test-configmap-1', 'test-configmap-2']
volume = k8s.V1Volume(
name='test-volume',
persistent_volume_claim=k8s.V1PersistentVolumeClaimVolumeSource(claim_name='test-volume'),
)
port = k8s.V1ContainerPort(name='http', container_port=80)
secret_file = Secret('volume', '/etc/sql_conn', 'airflow-secrets', 'sql_alchemy_conn')
secret_env = Secret('env', 'SQL_CONN', 'airflow-secrets', 'sql_alchemy_conn')
secret_all_keys = Secret('env', None, 'airflow-secrets-2')
volume_mount = k8s.V1VolumeMount(
name='test-volume', mount_path='/root/mount_file', sub_path=None, read_only=True
)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo", "10"],
labels={"foo": "bar"},
secrets=[secret_file, secret_env],
ports=[port],
volumes=[volume],
volume_mounts=[volume_mount],
name="airflow-test-pod",
task_id="task",
is_delete_operator_pod=True,
hostnetwork=False)
We decided to keep the Secret class as users seem to really like that simplifies the complexity of mounting Kubernetes secrets into workers.
For a more detailed list of changes to the KubernetesPodOperator API, please read here
DagRun configuration dictionary will now by default overwrite params dictionary. If you pass some key-value pairs
through airflow dags backfill -c
or airflow dags trigger -c
, the key-value pairs will
override the existing ones in params. You can revert this behaviour by setting dag_run_conf_overrides_params
to False
in your airflow.cfg
.
When DAG_DISCOVERY_SAFE_MODE
is active, Airflow will now filter all files that contain the string airflow
and dag
in a case insensitive mode. This is being changed to better support the new @dag
decorator.
The DAG-level permission actions, can_dag_read
and can_dag_edit
are going away. They are being replaced with can_read
and can_edit
. When a role is given DAG-level access, the resource name (or "view menu", in Flask App-Builder parlance) will now be prefixed with DAG:
. So the action can_dag_read
on example_dag_id
, is now represented as can_read
on DAG:example_dag_id
.
As part of running db upgrade
, existing permissions will be migrated for you.
When DAGs are initialized with the access_control
variable set, any usage of the old permission names will automatically be updated in the database, so this won't be a breaking change. A DeprecationWarning will be raised.
WARNING: Breaking change
Previously we were using two versions of UI, which were hard to maintain as we need to implement/update the same feature in both versions. With this release we've removed the older UI in favor of Flask App Builder RBAC UI. No need to set the RBAC UI explicitly in the configuration now as this is the only default UI. We did it to avoid the huge maintenance burden of two independent user interfaces
Please note that that custom auth backends will need re-writing to target new FAB based UI.
As part of this change, a few configuration items in [webserver]
section are removed and no longer applicable,
including authenticate
, filter_by_owner
, owner_mode
, and rbac
.
Before upgrading to this release, we recommend activating the new FAB RBAC UI. For that, you should set
the rbac
options in [webserver]
in the airflow.cfg
file to true
[webserver]
rbac = true
In order to login to the interface, you need to create an administrator account.
airflow create_user \
--role Admin \
--username admin \
--firstname FIRST_NAME \
--lastname LAST_NAME \
--email [email protected]
If you have already installed Airflow 2.0, you can create a user with the command airflow users create
.
You don't need to make changes to the configuration file as the FAB RBAC UI is
the only supported UI.
airflow users create \
--role Admin \
--username admin \
--firstname FIRST_NAME \
--lastname LAST_NAME \
--email [email protected]
The flask-ouathlib has been replaced with authlib because flask-outhlib has been deprecated in favour of authlib. The Old and New provider configuration keys that have changed are as follows
Old Keys | New keys |
---|---|
consumer_key | client_id |
consumer_secret | client_secret |
base_url | api_base_url |
request_token_params | client_kwargs |
For more information, visit https://flask-appbuilder.readthedocs.io/en/latest/security.html#authentication-oauth
In Airflow 2.0, the KubernetesExecutor will require a base pod template written in yaml. This file can exist
anywhere on the host machine and will be linked using the pod_template_file
configuration in the airflow.cfg.
The airflow.cfg
will still accept values for the worker_container_repository
, the worker_container_tag
, and
the default namespace.
The following airflow.cfg
values will be deprecated:
worker_container_image_pull_policy
airflow_configmap
airflow_local_settings_configmap
dags_in_image
dags_volume_subpath
dags_volume_mount_point
dags_volume_claim
logs_volume_subpath
logs_volume_claim
dags_volume_host
logs_volume_host
env_from_configmap_ref
env_from_secret_ref
git_repo
git_branch
git_sync_depth
git_subpath
git_sync_rev
git_user
git_password
git_sync_root
git_sync_dest
git_dags_folder_mount_point
git_ssh_key_secret_name
git_ssh_known_hosts_configmap_name
git_sync_credentials_secret
git_sync_container_repository
git_sync_container_tag
git_sync_init_container_name
git_sync_run_as_user
worker_service_account_name
image_pull_secrets
gcp_service_account_keys
affinity
tolerations
run_as_user
fs_group
[kubernetes_node_selectors]
[kubernetes_annotations]
[kubernetes_environment_variables]
[kubernetes_secrets]
[kubernetes_labels]
In Airflow 1.10.x, users could modify task pods at runtime by passing a dictionary to the executor_config
variable.
Users will now have full access the Kubernetes API via the kubernetes.client.models.V1Pod
.
While in the deprecated version a user would mount a volume using the following dictionary:
second_task = PythonOperator(
task_id="four_task",
python_callable=test_volume_mount,
executor_config={
"KubernetesExecutor": {
"volumes": [
{
"name": "example-kubernetes-test-volume",
"hostPath": {"path": "/tmp/"},
},
],
"volume_mounts": [
{
"mountPath": "/foo/",
"name": "example-kubernetes-test-volume",
},
]
}
}
)
In the new model a user can accomplish the same thing using the following code under the pod_override
key:
from kubernetes.client import models as k8s
second_task = PythonOperator(
task_id="four_task",
python_callable=test_volume_mount,
executor_config={"pod_override": k8s.V1Pod(
spec=k8s.V1PodSpec(
containers=[
k8s.V1Container(
name="base",
volume_mounts=[
k8s.V1VolumeMount(
mount_path="/foo/",
name="example-kubernetes-test-volume"
)
]
)
],
volumes=[
k8s.V1Volume(
name="example-kubernetes-test-volume",
host_path=k8s.V1HostPathVolumeSource(
path="/tmp/"
)
)
]
)
)
}
)
For Airflow 2.0, the traditional executor_config
will continue operation with a deprecation warning,
but will be removed in a future version.
Before:
from airflow.kubernetes.pod import Port
port = Port('http', 80)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
ports=[port],
task_id="task",
)
After:
from kubernetes.client import models as k8s
port = k8s.V1ContainerPort(name='http', container_port=80)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
ports=[port],
task_id="task",
)
Before:
from airflow.kubernetes.volume_mount import VolumeMount
volume_mount = VolumeMount('test-volume',
mount_path='/root/mount_file',
sub_path=None,
read_only=True)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
volume_mounts=[volume_mount],
task_id="task",
)
After:
from kubernetes.client import models as k8s
volume_mount = k8s.V1VolumeMount(
name='test-volume', mount_path='/root/mount_file', sub_path=None, read_only=True
)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
volume_mounts=[volume_mount],
task_id="task",
)
Before:
from airflow.kubernetes.volume import Volume
volume_config = {
'persistentVolumeClaim': {
'claimName': 'test-volume'
}
}
volume = Volume(name='test-volume', configs=volume_config)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
volumes=[volume],
task_id="task",
)
After:
from kubernetes.client import models as k8s
volume = k8s.V1Volume(
name='test-volume',
persistent_volume_claim=k8s.V1PersistentVolumeClaimVolumeSource(claim_name='test-volume'),
)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
volumes=[volume],
task_id="task",
)
Before:
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
env_vars={"ENV1": "val1", "ENV2": "val2"},
task_id="task",
)
After:
from kubernetes.client import models as k8s
env_vars = [
k8s.V1EnvVar(
name="ENV1",
value="val1"
),
k8s.V1EnvVar(
name="ENV2",
value="val2"
)]
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
env_vars=env_vars,
task_id="task",
)
PodRuntimeInfoEnv can now be added to the env_vars
variable as a V1EnvVarSource
Before:
from airflow.kubernetes.pod_runtime_info_env import PodRuntimeInfoEnv
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
pod_runtime_info_envs=[PodRuntimeInfoEnv("ENV3", "status.podIP")],
task_id="task",
)
After:
from kubernetes.client import models as k8s
env_vars = [
k8s.V1EnvVar(
name="ENV3",
value_from=k8s.V1EnvVarSource(
field_ref=k8s.V1ObjectFieldSelector(
field_path="status.podIP"
)
)
)
]
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
env_vars=env_vars,
task_id="task",
)
configmaps can now be added to the env_from
variable as a V1EnvVarSource
Before:
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
configmaps=['test-configmap'],
task_id="task"
)
After:
from kubernetes.client import models as k8s
configmap ="test-configmap"
env_from = [k8s.V1EnvFromSource(
config_map_ref=k8s.V1ConfigMapEnvSource(
name=configmap
)
)]
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
env_from=env_from,
task_id="task"
)
Before:
resources = {
'limit_cpu': 0.25,
'limit_memory': '64Mi',
'limit_ephemeral_storage': '2Gi',
'request_cpu': '250m',
'request_memory': '64Mi',
'request_ephemeral_storage': '1Gi',
}
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
labels={"foo": "bar"},
name="test",
task_id="task" + self.get_current_task_name(),
in_cluster=False,
do_xcom_push=False,
resources=resources,
)
After:
from kubernetes.client import models as k8s
resources=k8s.V1ResourceRequirements(
requests={
'memory': '64Mi',
'cpu': '250m',
'ephemeral-storage': '1Gi'
},
limits={
'memory': '64Mi',
'cpu': 0.25,
'nvidia.com/gpu': None,
'ephemeral-storage': '2Gi'
}
)
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
labels={"foo": "bar"},
name="test-" + str(random.randint(0, 1000000)),
task_id="task" + self.get_current_task_name(),
in_cluster=False,
do_xcom_push=False,
resources=resources,
)
Before:
k = KubernetesPodOperator(
namespace='default',
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo 10"],
name="test",
task_id="task",
image_pull_secrets="fake-secret",
cluster_context='default')
After:
quay_k8s = KubernetesPodOperator(
namespace='default',
image='quay.io/apache/bash',
image_pull_secrets=[k8s.V1LocalObjectReference('testquay')],
cmds=["bash", "-cx"],
name="airflow-private-image-pod",
task_id="task-two",
)
In Airflow 2.0, we added the new REST API. Experimental API still works, but support may be dropped in the future. If your application is still using the experimental API, you should consider migrating to the stable API.
The stable API exposes many endpoints available through the webserver. Here are the differences between the two endpoints that will help you migrate from the experimental REST API to the stable REST API.
The base endpoint for the stable API v1 is /api/v1/
. You must change the
experimental base endpoint from /api/experimental/
to /api/v1/
.
The table below shows the differences:
Purpose | Experimental REST API Endpoint | Stable REST API Endpoint |
---|---|---|
Create a DAGRuns(POST) | /api/experimental/dags/<DAG_ID>/dag_runs | /api/v1/dags/{dag_id}/dagRuns |
List DAGRuns(GET) | /api/experimental/dags/<DAG_ID>/dag_runs | /api/v1/dags/{dag_id}/dagRuns |
Check Health status(GET) | /api/experimental/test | /api/v1/health |
Task information(GET) | /api/experimental/dags/<DAG_ID>/tasks/<TASK_ID> | /api/v1//dags/{dag_id}/tasks/{task_id} |
TaskInstance public variable(GET) | /api/experimental/dags/<DAG_ID>/dag_runs/string:execution_date/tasks/<TASK_ID> | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} |
Pause DAG(PATCH) | /api/experimental/dags/<DAG_ID>/paused/string:paused | /api/v1/dags/{dag_id} |
Information of paused DAG(GET) | /api/experimental/dags/<DAG_ID>/paused | /api/v1/dags/{dag_id} |
Latest DAG Runs(GET) | /api/experimental/latest_runs | /api/v1/dags/{dag_id}/dagRuns |
Get all pools(GET) | /api/experimental/pools | /api/v1/pools |
Create a pool(POST) | /api/experimental/pools | /api/v1/pools |
Delete a pool(DELETE) | /api/experimental/pools/string:name | /api/v1/pools/{pool_name} |
DAG Lineage(GET) | /api/experimental/lineage/<DAG_ID>/string:execution_date/ | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries |
This endpoint /api/v1/dags/{dag_id}/dagRuns
also allows you to filter dag_runs with parameters such as start_date
, end_date
, execution_date
etc in the query string.
Therefore the operation previously performed by this endpoint
/api/experimental/dags/<string:dag_id>/dag_runs/<string:execution_date>
can now be handled with filter parameters in the query string.
Getting information about latest runs can be accomplished with the help of
filters in the query string of this endpoint(/api/v1/dags/{dag_id}/dagRuns
). Please check the Stable API
reference documentation for more information
Exception from DAG callbacks used to crash the Airflow Scheduler. As part of our efforts to make the Scheduler more performant and reliable, we have changed this behavior to log the exception instead. On top of that, a new dag.callback_exceptions counter metric has been added to help better monitor callback exceptions.
The Airflow CLI has been organized so that related commands are grouped together as subcommands, which means that if you use these commands in your scripts, you have to make changes to them.
This section describes the changes that have been made, and what you need to do to update your script.
The ability to manipulate users from the command line has been changed. airflow create_user
, airflow delete_user
and airflow list_users
has been grouped to a single command airflow users
with optional flags create
, list
and delete
.
The airflow list_dags
command is now airflow dags list
, airflow pause
is airflow dags pause
, etc.
In Airflow 1.10 and 2.0 there is an airflow config
command but there is a difference in behavior. In Airflow 1.10,
it prints all config options while in Airflow 2.0, it's a command group. airflow config
is now airflow config list
.
You can check other options by running the command airflow config --help
For a complete list of updated CLI commands, see https://airflow.apache.org/cli.html.
You can learn about the commands by running airflow --help
. For example to get help about the celery
group command,
you have to run the help command: airflow celery --help
.
Old command | New command | Group |
---|---|---|
airflow worker |
airflow celery worker |
celery |
airflow flower |
airflow celery flower |
celery |
airflow trigger_dag |
airflow dags trigger |
dags |
airflow delete_dag |
airflow dags delete |
dags |
airflow show_dag |
airflow dags show |
dags |
airflow list_dag |
airflow dags list |
dags |
airflow dag_status |
airflow dags status |
dags |
airflow backfill |
airflow dags backfill |
dags |
airflow list_dag_runs |
airflow dags list-runs |
dags |
airflow pause |
airflow dags pause |
dags |
airflow unpause |
airflow dags unpause |
dags |
airflow next_execution |
airflow dags next-execution |
dags |
airflow test |
airflow tasks test |
tasks |
airflow clear |
airflow tasks clear |
tasks |
airflow list_tasks |
airflow tasks list |
tasks |
airflow task_failed_deps |
airflow tasks failed-deps |
tasks |
airflow task_state |
airflow tasks state |
tasks |
airflow run |
airflow tasks run |
tasks |
airflow render |
airflow tasks render |
tasks |
airflow initdb |
airflow db init |
db |
airflow resetdb |
airflow db reset |
db |
airflow upgradedb |
airflow db upgrade |
db |
airflow checkdb |
airflow db check |
db |
airflow shell |
airflow db shell |
db |
airflow pool |
airflow pools |
pools |
airflow create_user |
airflow users create |
users |
airflow delete_user |
airflow users delete |
users |
airflow list_users |
airflow users list |
users |
airflow rotate_fernet_key |
airflow rotate-fernet-key |
|
airflow sync_perm |
airflow sync-perm |
To create a new user:
airflow users create --username jondoe --lastname doe --firstname jon --email [email protected] --role Viewer --password test
To list users:
airflow users list
To delete a user:
airflow users delete --username jondoe
To add a user to a role:
airflow users add-role --username jondoe --role Public
To remove a user from a role:
airflow users remove-role --username jondoe --role Public
For Airflow short option, use exactly one single character. New commands are available according to the following table:
Old command | New command |
---|---|
airflow (dags|tasks|scheduler) [-sd, --subdir] |
airflow (dags|tasks|scheduler) [-S, --subdir] |
airflow test [-dr, --dry_run] |
airflow tasks test [-n, --dry-run] |
airflow test [-tp, --task_params] |
airflow tasks test [-t, --task-params] |
airflow test [-pm, --post_mortem] |
airflow tasks test [-m, --post-mortem] |
airflow run [-int, --interactive] |
airflow tasks run [-N, --interactive] |
airflow backfill [-dr, --dry_run] |
airflow dags backfill [-n, --dry-run] |
airflow clear [-dx, --dag_regex] |
airflow tasks clear [-R, --dag-regex] |
airflow kerberos [-kt, --keytab] |
airflow kerberos [-k, --keytab] |
airflow webserver [-hn, --hostname] |
airflow webserver [-H, --hostname] |
airflow worker [-cn, --celery_hostname] |
airflow celery worker [-H, --celery-hostname] |
airflow flower [-hn, --hostname] |
airflow celery flower [-H, --hostname] |
airflow flower [-fc, --flower_conf] |
airflow celery flower [-c, --flower-conf] |
airflow flower [-ba, --basic_auth] |
airflow celery flower [-A, --basic-auth] |
For Airflow long option, use kebab-case instead of snake_case
Old option | New option |
---|---|
--task_regex |
--task-regex |
--start_date |
--start-date |
--end_date |
--end-date |
--dry_run |
--dry-run |
--no_backfill |
--no-backfill |
--mark_success |
--mark-success |
--donot_pickle |
--donot-pickle |
--ignore_dependencies |
--ignore-dependencies |
--ignore_first_depends_on_past |
--ignore-first-depends-on-past |
--delay_on_limit |
--delay-on-limit |
--reset_dagruns |
--reset-dagruns |
--rerun_failed_tasks |
--rerun-failed-tasks |
--run_backwards |
--run-backwards |
--only_failed |
--only-failed |
--only_running |
--only-running |
--exclude_subdags |
--exclude-subdags |
--exclude_parentdag |
--exclude-parentdag |
--dag_regex |
--dag-regex |
--run_id |
--run-id |
--exec_date |
--exec-date |
--ignore_all_dependencies |
--ignore-all-dependencies |
--ignore_depends_on_past |
--ignore-depends-on-past |
--ship_dag |
--ship-dag |
--job_id |
--job-id |
--cfg_path |
--cfg-path |
--ssl_cert |
--ssl-cert |
--ssl_key |
--ssl-key |
--worker_timeout |
--worker-timeout |
--access_logfile |
--access-logfile |
--error_logfile |
--error-logfile |
--dag_id |
--dag-id |
--num_runs |
--num-runs |
--do_pickle |
--do-pickle |
--celery_hostname |
--celery-hostname |
--broker_api |
--broker-api |
--flower_conf |
--flower-conf |
--url_prefix |
--url-prefix |
--basic_auth |
--basic-auth |
--task_params |
--task-params |
--post_mortem |
--post-mortem |
--conn_uri |
--conn-uri |
--conn_type |
--conn-type |
--conn_host |
--conn-host |
--conn_login |
--conn-login |
--conn_password |
--conn-password |
--conn_schema |
--conn-schema |
--conn_port |
--conn-port |
--conn_extra |
--conn-extra |
--use_random_password |
--use-random-password |
--skip_serve_logs |
--skip-serve-logs |
The serve_logs
command has been deleted. This command should be run only by internal application mechanisms
and there is no need for it to be accessible from the CLI interface.
If the DAGRun was triggered with conf key/values passed in, they will also be printed in the dag_state CLI response ie. running, {"name": "bob"} whereas in in prior releases it just printed the state: ie. running
When doing backfill with depends_on_past
dags, users will need to pass --ignore-first-depends-on-past
.
We should default it as true
to avoid confusion
If you are using Airflow Plugins and were passing admin_views
& menu_links
which were used in the
non-RBAC UI (flask-admin
based UI), upto it to use flask_appbuilder_views
and flask_appbuilder_menu_links
.
Old:
from airflow.plugins_manager import AirflowPlugin
from flask_admin import BaseView, expose
from flask_admin.base import MenuLink
class TestView(BaseView):
@expose('/')
def test(self):
# in this example, put your test_plugin/test.html template at airflow/plugins/templates/test_plugin/test.html
return self.render("test_plugin/test.html", content="Hello galaxy!")
v = TestView(category="Test Plugin", name="Test View")
ml = MenuLink(
category='Test Plugin',
name='Test Menu Link',
url='https://airflow.apache.org/')
class AirflowTestPlugin(AirflowPlugin):
admin_views = [v]
menu_links = [ml]
Change it to:
from airflow.plugins_manager import AirflowPlugin
from flask_appbuilder import expose, BaseView as AppBuilderBaseView
class TestAppBuilderBaseView(AppBuilderBaseView):
default_view = "test"
@expose("/")
def test(self):
return self.render("test_plugin/test.html", content="Hello galaxy!")
v_appbuilder_view = TestAppBuilderBaseView()
v_appbuilder_package = {"name": "Test View",
"category": "Test Plugin",
"view": v_appbuilder_view}
# Creating a flask appbuilder Menu Item
appbuilder_mitem = {"name": "Google",
"category": "Search",
"category_icon": "fa-th",
"href": "https://www.google.com"}
# Defining the plugin class
class AirflowTestPlugin(AirflowPlugin):
name = "test_plugin"
appbuilder_views = [v_appbuilder_package]
appbuilder_menu_items = [appbuilder_mitem]
The all
extra were reduced to include only user-facing dependencies. This means
that this extra does not contain development dependencies. If you were using it and
depending on the development packages then you should use devel_all
.
As mentioned earlier in Step 2, the 1.10.14 release is intended to be a "bridge release" which would be a step in the migration to Airflow 2.0.
After the Airflow 2.0 GA (General Availability) release, it expected that all future Airflow development would be based on Airflow 2.0, including a series of patch releases such as 2.0.1, 2.0.2 and then feature releases such as 2.1.
The Airflow 1.10.x release tree will be supported for a limited time after the GA release of Airflow 2.0.
Specifically, only "critical fixes" defined as fixes to bugs that take down Production systems, will be backported to 1.10.x core for six months after Airflow 2.0.0 is released.
In addition, Backport providers within 1.10.x, will be supported for critical fixes for three months after Airflow 2.0.0 is released.