-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·70 lines (51 loc) · 1.67 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#! /usr/bin/env python3
def load_data(filename):
with open(filename, 'r') as f:
for line in f:
line = line.rstrip('\n')
t1 = line.split(' = ')
t2 = t1[0].split(' to ')
yield int(t1[1]), t2[0], t2[1]
# Part One
import itertools
import networkx as nx
G = nx.Graph()
for distance, f, t in load_data('input.txt'):
G.add_edge(f, t, weight=distance)
def solve_shortest_hamiltonian_path(G):
nodes = list(G.nodes)
num_nodes = len(nodes)
# Brute-force search over all permutations of nodes
best_path = None
min_cost = float("inf")
for perm in itertools.permutations(nodes): # Try all orderings
try:
cost = sum(G[perm[i]][perm[i+1]]['weight'] for i in range(num_nodes - 1))
if cost < min_cost:
min_cost = cost
best_path = perm # This is the optimal open path
except KeyError:
# This catches cases where a path doesn't exist in non-complete graphs
continue
return best_path, min_cost
path, cost = solve_shortest_hamiltonian_path(G)
print(cost)
# Part Two
def solve_longest_hamiltonian_path(G):
nodes = list(G.nodes)
num_nodes = len(nodes)
# Brute-force search over all permutations of nodes
best_path = None
max_cost = float("-inf") # Start with negative infinity
for perm in itertools.permutations(nodes): # Try all orderings
try:
cost = sum(G[perm[i]][perm[i+1]]['weight'] for i in range(num_nodes - 1))
if cost > max_cost: # Maximization instead of minimization
max_cost = cost
best_path = perm # Store the best (longest) path
except KeyError:
# This catches cases where a path doesn't exist in non-complete graphs
continue
return best_path, max_cost
path, cost = solve_longest_hamiltonian_path(G)
print(cost)