-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
77 lines (67 loc) · 2.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# custom weights initialization called on ``netG`` and ``netD``
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import PIL
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def create_checkpoint(model, optimizer, epoch, loss, multiGPU=False, type="G"):
if not multiGPU:
filename = f'/ssd_scratch/cvit/anirudhkaushik/checkpoints/gan{type}_checkpoint_{epoch}_epoch.pt'
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'loss': loss
}
torch.save(checkpoint, filename)
# save latest
filename = f'/ssd_scratch/cvit/anirudhkaushik/checkpoints/gan{type}_checkpoint_latest.pt'
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'loss': loss
}
torch.save(checkpoint, filename)
else:
filename = f'/ssd_scratch/cvit/anirudhkaushik/checkpoints/gan{type}_checkpoint_{epoch}_epoch.pt'
checkpoint = {
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'loss': loss
}
torch.save(checkpoint, filename)
# save latest
filename = f'/ssd_scratch/cvit/anirudhkaushik/checkpoints/gan{type}_checkpoint_latest.pt'
checkpoint = {
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'loss': loss
}
torch.save(checkpoint, filename)
def restart_last_checkpoint(model, optimizer, multiGPU=False, type="G"):
filename = f'/ssd_scratch/cvit/anirudhkaushik/checkpoints/gan{type}_checkpoint_latest.pt'
if not multiGPU:
checkpoint = torch.load(filename)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print(f"Restarting from epoch {epoch}")
else:
checkpoint = torch.load(filename)
model.module.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print(f"Restarting from epoch {epoch}")
return epoch, loss