-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
330 lines (297 loc) · 13.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import csv
import itertools
import os
import time
from collections import defaultdict
import copy
import pathlib
from pathlib import Path
from datetime import date
import hydra
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.distributions import Categorical
import torch.nn.functional as F
import torch.optim as optim
from robustbench.model_zoo.enums import ThreatModel
from robustbench.utils import load_model
import wandb
import pandas as pd
from PIL import Image
import utils
from dataset import get_loaders
@torch.no_grad()
def test(model, loader, criterion, cfg):
model.eval()
all_test_corrects = []
total_loss = 0.0
for x, y in loader:
x, y = x.cuda(), y.cuda()
logits = model(x)
loss = criterion(logits, y)
all_test_corrects.append(torch.argmax(logits, dim=-1) == y)
total_loss += loss
acc = torch.cat(all_test_corrects).float().mean().detach().item()
total_loss = total_loss / len(loader)
total_loss = total_loss.detach().item()
return acc, total_loss
def get_lr_weights(model, loader, cfg):
layer_names = [
n for n, _ in model.named_parameters() if "bn" not in n
]
metrics = defaultdict(list)
average_metrics = defaultdict(float)
partial_loader = itertools.islice(loader, 5)
xent_grads, entropy_grads = [], []
for x, y in partial_loader:
x, y = x.cuda(), y.cuda()
logits = model(x)
loss_xent = F.cross_entropy(logits, y)
grad_xent = torch.autograd.grad(
outputs=loss_xent, inputs=model.parameters(), retain_graph=True
)
xent_grads.append([g.detach() for g in grad_xent])
def get_grad_norms(model, grads, cfg):
_metrics = defaultdict(list)
grad_norms, rel_grad_norms = [], []
for (name, param), grad in zip(model.named_parameters(), grads):
if name not in layer_names:
continue
if cfg.args.auto_tune == 'eb-criterion':
tmp = (grad*grad) / (torch.var(grad, dim=0, keepdim=True)+1e-8)
_metrics[name] = tmp.mean().item()
else:
_metrics[name] = torch.norm(grad).item() / torch.norm(param).item()
return _metrics
for xent_grad in xent_grads:
xent_grad_metrics = get_grad_norms(model, xent_grad, cfg)
for k, v in xent_grad_metrics.items():
metrics[k].append(v)
for k, v in metrics.items():
average_metrics[k] = np.array(v).mean(0)
return average_metrics
def train(model, loader, criterion, opt, cfg, orig_model=None):
all_train_corrects = []
total_loss = 0.0
magnitudes = defaultdict(float)
for x, y in loader:
x, y = x.cuda(), y.cuda()
logits = model(x)
loss = criterion(logits, y)
all_train_corrects.append(torch.argmax(logits, dim=-1) == y)
total_loss += loss
opt.zero_grad()
loss.backward()
opt.step()
acc = torch.cat(all_train_corrects).float().mean().detach().item()
total_loss = total_loss / len(loader)
total_loss = total_loss.detach().item()
return acc, total_loss, magnitudes
@hydra.main(config_path="config", config_name="config")
def main(cfg):
cfg.args.log_dir = pathlib.Path.cwd()
cfg.args.log_dir = os.path.join(
cfg.args.log_dir, "results", cfg.data.dataset_name, date.today().strftime("%Y.%m.%d"), cfg.args.auto_tune
)
print(f"Log dir: {cfg.args.log_dir}")
os.makedirs(cfg.args.log_dir, exist_ok=True)
tune_options = [
"first_two_block",
"second_block",
"third_block",
"last",
"all",
]
if cfg.data.dataset_name == "imagenet-c":
tune_options.append("fourth_block")
if cfg.args.auto_tune != 'none':
tune_options = ["all"]
if cfg.args.epochs == 0: tune_options = ['all']
corruption_types = cfg.data.corruption_types
for corruption_type in corruption_types:
cfg.wandb.exp_name = f"{cfg.data.dataset_name}_corruption{corruption_type}"
if cfg.wandb.use:
utils.setup_wandb(cfg)
utils.set_seed_everywhere(cfg.args.seed)
loaders = get_loaders(cfg, corruption_type, cfg.data.severity)
for tune_option in tune_options:
tune_metrics = defaultdict(list)
lr_wd_grid = [
(1e-1, 1e-4),
(1e-2, 1e-4),
(1e-3, 1e-4),
(1e-4, 1e-4),
(1e-5, 1e-4),
]
for lr, wd in lr_wd_grid:
dataset_name = (
"imagenet"
if cfg.data.dataset_name == "imagenet-c"
else cfg.data.dataset_name
)
model = load_model(
cfg.data.model_name,
cfg.user.ckpt_dir,
dataset_name,
ThreatModel.corruptions,
)
orig_model = copy.deepcopy(model)
model = model.cuda()
if cfg.data.dataset_name == "cifar10":
tune_params_dict = {
"all": [model.parameters()],
"first_two_block": [
model.conv1.parameters(),
model.block1.parameters(),
],
"second_block": [
model.block2.parameters(),
],
"third_block": [
model.block3.parameters(),
],
"last": [model.fc.parameters()],
}
elif cfg.data.dataset_name == "imagenet-c":
tune_params_dict = {
"all": [model.model.parameters()],
"first_second": [
model.model.conv1.parameters(),
model.model.layer1.parameters(),
model.model.layer2.parameters(),
],
"first_two_block": [
model.model.conv1.parameters(),
model.model.layer1.parameters(),
],
"second_block": [
model.model.layer2.parameters(),
],
"third_block": [
model.model.layer3.parameters(),
],
"fourth_block": [
model.model.layer4.parameters(),
],
"last": [model.model.fc.parameters()],
}
params_list = list(itertools.chain(*tune_params_dict[tune_option]))
opt = optim.Adam(params_list, lr=lr, weight_decay=wd)
N = sum(p.numel() for p in params_list if p.requires_grad)
print(
f"\nTrain mode={cfg.args.train_mode}, using {cfg.args.train_n} corrupted images for training"
)
print(
f"Re-training {tune_option} ({N} params). lr={lr}, wd={wd}. Corruption {corruption_type}"
)
criterion = F.cross_entropy
layer_weights = [0 for layer, _ in model.named_parameters() if 'bn' not in layer]
layer_names = [layer for layer, _ in model.named_parameters() if 'bn' not in layer]
for epoch in range(1, cfg.args.epochs + 1):
if cfg.args.train_mode == "train":
model.train()
if cfg.args.auto_tune != 'none':
if cfg.args.auto_tune == 'RGN':
weights = get_lr_weights(model, loaders["train"], cfg)
max_weight = max(weights.values())
for k, v in weights.items():
weights[k] = v / max_weight
layer_weights = [sum(x) for x in zip(layer_weights, weights.values())]
tune_metrics['layer_weights'] = layer_weights
params = defaultdict()
for n, p in model.named_parameters():
if "bn" not in n:
params[n] = p
params_weights = []
for param, weight in weights.items():
params_weights.append({"params": params[param], "lr": weight*lr})
opt = optim.Adam(params_weights, lr=lr, weight_decay=wd)
elif cfg.args.auto_tune == 'eb-criterion':
# Go by individual layers
weights = get_lr_weights(model, loaders["train"], cfg)
print(f"Epoch {epoch}, autotuning weights {min(weights.values()), max(weights.values())}")
tune_metrics['max_weight'].append(max(weights.values()))
tune_metrics['min_weight'].append(min(weights.values()))
print(weights.values())
for k, v in weights.items():
weights[k] = 0.0 if v < 0.95 else 1.0
print("weight values", weights.values())
layer_weights = [sum(x) for x in zip(layer_weights, weights.values())]
tune_metrics['layer_weights'] = layer_weights
params = defaultdict()
for n, p in model.named_parameters():
if "bn" not in n:
params[n] = p
params_weights = []
for k, v in params.items():
if k in weights.keys():
params_weights.append({"params": params[k], "lr": weights[k]*lr})
else:
params_weights.append({"params": params[k], "lr": 0.0})
opt = optim.Adam(params_weights, lr=lr, weight_decay=wd)
else:
# Log rough fraction of parameters being tuned
no_weight = 0
for elt in params_weights:
if elt['lr'] == 0.:
no_weight += elt['params'][0].flatten().shape[0]
total_params = sum(p.numel() for p in model.parameters())
tune_metrics['frac_params'].append((total_params-no_weight)/total_params)
print(f"Tuning {(total_params-no_weight)} out of {total_params} total")
acc_tr, loss_tr, grad_magnitudes = train(
model, loaders["train"], criterion, opt, cfg, orig_model=orig_model
)
acc_te, loss_te = test(model, loaders["test"], criterion, cfg)
acc_val, loss_val = test(model, loaders["val"], criterion, cfg)
tune_metrics["acc_train"].append(acc_tr)
tune_metrics["acc_val"].append(acc_val)
tune_metrics["acc_te"].append(acc_te)
log_dict = {
f"{tune_option}/train/acc": acc_tr,
f"{tune_option}/train/loss": loss_tr,
f"{tune_option}/val/acc": acc_val,
f"{tune_option}/val/loss": loss_val,
f"{tune_option}/test/acc": acc_te,
f"{tune_option}/test/loss": loss_te,
}
print(f"Epoch {epoch:2d} Train acc: {acc_tr:.4f}, Val acc: {acc_val:.4f}")
if cfg.wandb.use:
wandb.log(log_dict)
tune_metrics["lr_tested"].append(lr)
tune_metrics["wd_tested"].append(wd)
# Get test acc according to best val acc
best_run_idx = np.argmax(np.array(tune_metrics["acc_val"]))
best_testacc = tune_metrics["acc_te"][best_run_idx]
best_lr_wd = best_run_idx // (cfg.args.epochs)
print(
f"Best epoch: {best_run_idx % (cfg.args.epochs)}, Test Acc: {best_testacc}"
)
data = {
"corruption_type": corruption_type,
"train_mode": cfg.args.train_mode,
"tune_option": tune_option,
"auto_tune": cfg.args.auto_tune,
"train_n": cfg.args.train_n,
"seed": cfg.args.seed,
"lr": tune_metrics["lr_tested"][best_lr_wd],
"wd": tune_metrics["wd_tested"][best_lr_wd],
"val_acc": tune_metrics["acc_val"][best_run_idx],
"best_testacc": best_testacc,
}
recorded = False
fieldnames = data.keys()
csv_file_name = f"{cfg.args.log_dir}/results_seed{cfg.args.seed}.csv"
write_header = True if not os.path.exists(csv_file_name) else False
while not recorded:
try:
with open(csv_file_name, "a") as f:
csv_writer = csv.DictWriter(f, fieldnames=fieldnames, restval=0.0)
if write_header:
csv_writer.writeheader()
csv_writer.writerow(data)
recorded = True
except:
time.sleep(5)
if __name__ == "__main__":
main()