forked from lightningnetwork/lnd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuit_map.go
1212 lines (1010 loc) · 35.9 KB
/
circuit_map.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package htlcswitch
import (
"bytes"
"fmt"
"sync"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch/hop"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lnwire"
)
var (
// ErrCorruptedCircuitMap indicates that the on-disk bucketing structure
// has altered since the circuit map instance was initialized.
ErrCorruptedCircuitMap = errors.New("circuit map has been corrupted")
// ErrCircuitNotInHashIndex indicates that a particular circuit did not
// appear in the in-memory hash index.
ErrCircuitNotInHashIndex = errors.New("payment circuit not found in " +
"hash index")
// ErrUnknownCircuit signals that circuit could not be removed from the
// map because it was not found.
ErrUnknownCircuit = errors.New("unknown payment circuit")
// ErrCircuitClosing signals that an htlc has already closed this
// circuit in-memory.
ErrCircuitClosing = errors.New("circuit has already been closed")
// ErrDuplicateCircuit signals that this circuit was previously
// added.
ErrDuplicateCircuit = errors.New("duplicate circuit add")
// ErrUnknownKeystone signals that no circuit was found using the
// outgoing circuit key.
ErrUnknownKeystone = errors.New("unknown circuit keystone")
// ErrDuplicateKeystone signals that this circuit was previously
// assigned a keystone.
ErrDuplicateKeystone = errors.New("cannot add duplicate keystone")
)
// CircuitModifier is a common interface used by channel links to modify the
// contents of the circuit map maintained by the switch.
type CircuitModifier interface {
// OpenCircuits preemptively records a batch keystones that will mark
// currently pending circuits as open. These changes can be rolled back
// on restart if the outgoing Adds do not make it into a commitment
// txn.
OpenCircuits(...Keystone) error
// TrimOpenCircuits removes a channel's open channels with htlc indexes
// above `start`.
TrimOpenCircuits(chanID lnwire.ShortChannelID, start uint64) error
// DeleteCircuits removes the incoming circuit key to remove all
// persistent references to a circuit. Returns a ErrUnknownCircuit if
// any of the incoming keys are not known.
DeleteCircuits(inKeys ...CircuitKey) error
}
// CircuitLookup is a common interface used to lookup information that is stored
// in the circuit map.
type CircuitLookup interface {
// LookupCircuit queries the circuit map for the circuit identified by
// inKey.
LookupCircuit(inKey CircuitKey) *PaymentCircuit
// LookupOpenCircuit queries the circuit map for a circuit identified
// by its outgoing circuit key.
LookupOpenCircuit(outKey CircuitKey) *PaymentCircuit
}
// CircuitFwdActions represents the forwarding decision made by the circuit
// map, and is returned from CommitCircuits. The sequence of circuits provided
// to CommitCircuits is split into three sub-sequences, allowing the caller to
// do an in-order scan, comparing the head of each subsequence, to determine
// the decision made by the circuit map.
type CircuitFwdActions struct {
// Adds is the subsequence of circuits that were successfully committed
// in the circuit map.
Adds []*PaymentCircuit
// Drops is the subsequence of circuits for which no action should be
// done.
Drops []*PaymentCircuit
// Fails is the subsequence of circuits that should be failed back by
// the calling link.
Fails []*PaymentCircuit
}
// CircuitMap is an interface for managing the construction and teardown of
// payment circuits used by the switch.
type CircuitMap interface {
CircuitModifier
CircuitLookup
// CommitCircuits attempts to add the given circuits to the circuit
// map. The list of circuits is split into three distinct
// sub-sequences, corresponding to adds, drops, and fails. Adds should
// be forwarded to the switch, while fails should be failed back
// locally within the calling link.
CommitCircuits(circuit ...*PaymentCircuit) (*CircuitFwdActions, error)
// CloseCircuit marks the circuit identified by `outKey` as closing
// in-memory, which prevents duplicate settles/fails from completing an
// open circuit twice.
CloseCircuit(outKey CircuitKey) (*PaymentCircuit, error)
// FailCircuit is used by locally failed HTLCs to mark the circuit
// identified by `inKey` as closing in-memory, which prevents duplicate
// settles/fails from being accepted for the same circuit.
FailCircuit(inKey CircuitKey) (*PaymentCircuit, error)
// LookupByPaymentHash queries the circuit map and returns all open
// circuits that use the given payment hash.
LookupByPaymentHash(hash [32]byte) []*PaymentCircuit
// NumPending returns the total number of active circuits added by
// CommitCircuits.
NumPending() int
// NumOpen returns the number of circuits with HTLCs that have been
// forwarded via an outgoing link.
NumOpen() int
}
var (
// circuitAddKey is the key used to retrieve the bucket containing
// payment circuits. A circuit records information about how to return
// a packet to the source link, potentially including an error
// encrypter for applying this hop's encryption to the payload in the
// reverse direction.
//
// Bucket hierarchy:
//
// circuitAddKey(root-bucket)
// |
// |-- <incoming-circuit-key>: <encoded bytes of PaymentCircuit>
// |-- <incoming-circuit-key>: <encoded bytes of PaymentCircuit>
// |
// ...
//
circuitAddKey = []byte("circuit-adds")
// circuitKeystoneKey is used to retrieve the bucket containing circuit
// keystones, which are set in place once a forwarded packet is
// assigned an index on an outgoing commitment txn.
//
// Bucket hierarchy:
//
// circuitKeystoneKey(root-bucket)
// |
// |-- <outgoing-circuit-key>: <incoming-circuit-key>
// |-- <outgoing-circuit-key>: <incoming-circuit-key>
// |
// ...
//
circuitKeystoneKey = []byte("circuit-keystones")
)
// circuitMap is a data structure that implements thread safe, persistent
// storage of circuit routing information. The switch consults a circuit map to
// determine where to forward returning HTLC update messages. Circuits are
// always identifiable by their incoming CircuitKey, in addition to their
// outgoing CircuitKey if the circuit is fully-opened.
type circuitMap struct {
cfg *CircuitMapConfig
mtx sync.RWMutex
// pending is an in-memory mapping of all half payment circuits, and is
// kept in sync with the on-disk contents of the circuit map.
pending map[CircuitKey]*PaymentCircuit
// opened is an in-memory mapping of all full payment circuits, which
// is also synchronized with the persistent state of the circuit map.
opened map[CircuitKey]*PaymentCircuit
// closed is an in-memory set of circuits for which the switch has
// received a settle or fail. This precedes the actual deletion of a
// circuit from disk.
closed map[CircuitKey]struct{}
// hashIndex is a volatile index that facilitates fast queries by
// payment hash against the contents of circuits. This index can be
// reconstructed entirely from the set of persisted full circuits on
// startup.
hashIndex map[[32]byte]map[CircuitKey]struct{}
}
// CircuitMapConfig houses the critical interfaces and references necessary to
// parameterize an instance of circuitMap.
type CircuitMapConfig struct {
// DB provides the persistent storage engine for the circuit map.
DB kvdb.Backend
// FetchAllOpenChannels is a function that fetches all currently open
// channels from the channel database.
FetchAllOpenChannels func() ([]*channeldb.OpenChannel, error)
// FetchClosedChannels is a function that fetches all closed channels
// from the channel database.
FetchClosedChannels func(
pendingOnly bool) ([]*channeldb.ChannelCloseSummary, error)
// ExtractErrorEncrypter derives the shared secret used to encrypt
// errors from the obfuscator's ephemeral public key.
ExtractErrorEncrypter hop.ErrorEncrypterExtracter
// CheckResolutionMsg checks whether a given resolution message exists
// for the passed CircuitKey.
CheckResolutionMsg func(outKey *CircuitKey) error
}
// NewCircuitMap creates a new instance of the circuitMap.
func NewCircuitMap(cfg *CircuitMapConfig) (CircuitMap, error) {
cm := &circuitMap{
cfg: cfg,
}
// Initialize the on-disk buckets used by the circuit map.
if err := cm.initBuckets(); err != nil {
return nil, err
}
// Delete old circuits and keystones of closed channels.
if err := cm.cleanClosedChannels(); err != nil {
return nil, err
}
// Load any previously persisted circuit into back into memory.
if err := cm.restoreMemState(); err != nil {
return nil, err
}
// Trim any keystones that were not committed in an outgoing commit txn.
//
// NOTE: This operation will be applied to the persistent state of all
// active channels. Therefore, it must be called before any links are
// created to avoid interfering with normal operation.
if err := cm.trimAllOpenCircuits(); err != nil {
return nil, err
}
return cm, nil
}
// initBuckets ensures that the primary buckets used by the circuit are
// initialized so that we can assume their existence after startup.
func (cm *circuitMap) initBuckets() error {
return kvdb.Update(cm.cfg.DB, func(tx kvdb.RwTx) error {
_, err := tx.CreateTopLevelBucket(circuitKeystoneKey)
if err != nil {
return err
}
_, err = tx.CreateTopLevelBucket(circuitAddKey)
return err
}, func() {})
}
// cleanClosedChannels deletes all circuits and keystones related to closed
// channels. It first reads all the closed channels and caches the ShortChanIDs
// into a map for fast lookup. Then it iterates the circuit bucket and keystone
// bucket and deletes items whose ChanID matches the ShortChanID.
//
// NOTE: this operation can also be built into restoreMemState since the latter
// already opens and iterates the two root buckets, circuitAddKey and
// circuitKeystoneKey. Depending on the size of the buckets, this marginal gain
// may be worth investigating. Atm, for clarity, this operation is wrapped into
// its own function.
func (cm *circuitMap) cleanClosedChannels() error {
log.Infof("Cleaning circuits from disk for closed channels")
// closedChanIDSet stores the short channel IDs for closed channels.
closedChanIDSet := make(map[lnwire.ShortChannelID]struct{})
// circuitKeySet stores the incoming circuit keys of the payment
// circuits that need to be deleted.
circuitKeySet := make(map[CircuitKey]struct{})
// keystoneKeySet stores the outgoing keys of the keystones that need
// to be deleted.
keystoneKeySet := make(map[CircuitKey]struct{})
// isClosedChannel is a helper closure that returns a bool indicating
// the chanID belongs to a closed channel.
isClosedChannel := func(chanID lnwire.ShortChannelID) bool {
// Skip if the channel ID is zero value. This has the effect
// that a zero value incoming or outgoing key will never be
// matched and its corresponding circuits or keystones are not
// deleted.
if chanID.ToUint64() == 0 {
return false
}
_, ok := closedChanIDSet[chanID]
return ok
}
// Find closed channels and cache their ShortChannelIDs into a map.
// This map will be used for looking up relative circuits and keystones.
closedChannels, err := cm.cfg.FetchClosedChannels(false)
if err != nil {
return err
}
for _, closedChannel := range closedChannels {
// Skip if the channel close is pending.
if closedChannel.IsPending {
continue
}
closedChanIDSet[closedChannel.ShortChanID] = struct{}{}
}
log.Debugf("Found %v closed channels", len(closedChanIDSet))
// Exit early if there are no closed channels.
if len(closedChanIDSet) == 0 {
log.Infof("Finished cleaning: no closed channels found, " +
"no actions taken.",
)
return nil
}
// Find the payment circuits and keystones that need to be deleted.
if err := kvdb.View(cm.cfg.DB, func(tx kvdb.RTx) error {
circuitBkt := tx.ReadBucket(circuitAddKey)
if circuitBkt == nil {
return ErrCorruptedCircuitMap
}
keystoneBkt := tx.ReadBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
// If a circuit's incoming/outgoing key prefix matches the
// ShortChanID, it will be deleted. However, if the ShortChanID
// of the incoming key is zero, the circuit will be kept as it
// indicates a locally initiated payment.
if err := circuitBkt.ForEach(func(_, v []byte) error {
circuit, err := cm.decodeCircuit(v)
if err != nil {
return err
}
// Check if the incoming channel ID can be found in the
// closed channel ID map.
if !isClosedChannel(circuit.Incoming.ChanID) {
return nil
}
circuitKeySet[circuit.Incoming] = struct{}{}
return nil
}); err != nil {
return err
}
// If a keystone's InKey or OutKey matches the short channel id
// in the closed channel ID map, it will be deleted.
err := keystoneBkt.ForEach(func(k, v []byte) error {
var (
inKey CircuitKey
outKey CircuitKey
)
// Decode the incoming and outgoing circuit keys.
if err := inKey.SetBytes(v); err != nil {
return err
}
if err := outKey.SetBytes(k); err != nil {
return err
}
// Check if the incoming channel ID can be found in the
// closed channel ID map.
if isClosedChannel(inKey.ChanID) {
// If the incoming channel is closed, we can
// skip checking on outgoing channel ID because
// this keystone will be deleted.
keystoneKeySet[outKey] = struct{}{}
// Technically the incoming keys found in
// keystone bucket should be a subset of
// circuit bucket. So a previous loop should
// have this inKey put inside circuitAddKey map
// already. We do this again to be sure the
// circuits are properly cleaned. Even this
// inKey doesn't exist in circuit bucket, we
// are fine as db deletion is a noop.
circuitKeySet[inKey] = struct{}{}
return nil
}
// Check if the outgoing channel ID can be found in the
// closed channel ID map. Notice that we need to store
// the outgoing key because it's used for db query.
//
// NOTE: We skip this if a resolution message can be
// found under the outKey. This means that there is an
// existing resolution message(s) that need to get to
// the incoming links.
if isClosedChannel(outKey.ChanID) {
// Check the resolution message store. A return
// value of nil means we need to skip deleting
// these circuits.
if cm.cfg.CheckResolutionMsg(&outKey) == nil {
return nil
}
keystoneKeySet[outKey] = struct{}{}
// Also update circuitKeySet to mark the
// payment circuit needs to be deleted.
circuitKeySet[inKey] = struct{}{}
}
return nil
})
return err
}, func() {
// Reset the sets.
circuitKeySet = make(map[CircuitKey]struct{})
keystoneKeySet = make(map[CircuitKey]struct{})
}); err != nil {
return err
}
log.Debugf("To be deleted: num_circuits=%v, num_keystones=%v",
len(circuitKeySet), len(keystoneKeySet),
)
numCircuitsDeleted := 0
numKeystonesDeleted := 0
// Delete all the circuits and keystones for closed channels.
if err := kvdb.Update(cm.cfg.DB, func(tx kvdb.RwTx) error {
circuitBkt := tx.ReadWriteBucket(circuitAddKey)
if circuitBkt == nil {
return ErrCorruptedCircuitMap
}
keystoneBkt := tx.ReadWriteBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
// Delete the circuit.
for inKey := range circuitKeySet {
if err := circuitBkt.Delete(inKey.Bytes()); err != nil {
return err
}
numCircuitsDeleted++
}
// Delete the keystone using the outgoing key.
for outKey := range keystoneKeySet {
err := keystoneBkt.Delete(outKey.Bytes())
if err != nil {
return err
}
numKeystonesDeleted++
}
return nil
}, func() {}); err != nil {
numCircuitsDeleted = 0
numKeystonesDeleted = 0
return err
}
log.Infof("Finished cleaning: num_closed_channel=%v, "+
"num_circuits=%v, num_keystone=%v",
len(closedChannels), numCircuitsDeleted, numKeystonesDeleted,
)
return nil
}
// restoreMemState loads the contents of the half circuit and full circuit
// buckets from disk and reconstructs the in-memory representation of the
// circuit map. Afterwards, the state of the hash index is reconstructed using
// the recovered set of full circuits. This method will also remove any stray
// keystones, which are those that appear fully-opened, but have no pending
// circuit related to the intended incoming link.
func (cm *circuitMap) restoreMemState() error {
log.Infof("Restoring in-memory circuit state from disk")
var (
opened map[CircuitKey]*PaymentCircuit
pending map[CircuitKey]*PaymentCircuit
)
if err := kvdb.Update(cm.cfg.DB, func(tx kvdb.RwTx) error {
// Restore any of the circuits persisted in the circuit bucket
// back into memory.
circuitBkt := tx.ReadWriteBucket(circuitAddKey)
if circuitBkt == nil {
return ErrCorruptedCircuitMap
}
if err := circuitBkt.ForEach(func(_, v []byte) error {
circuit, err := cm.decodeCircuit(v)
if err != nil {
return err
}
circuit.LoadedFromDisk = true
pending[circuit.Incoming] = circuit
return nil
}); err != nil {
return err
}
// Furthermore, load the keystone bucket and resurrect the
// keystones used in any open circuits.
keystoneBkt := tx.ReadWriteBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
var strayKeystones []Keystone
if err := keystoneBkt.ForEach(func(k, v []byte) error {
var (
inKey CircuitKey
outKey = &CircuitKey{}
)
// Decode the incoming and outgoing circuit keys.
if err := inKey.SetBytes(v); err != nil {
return err
}
if err := outKey.SetBytes(k); err != nil {
return err
}
// Retrieve the pending circuit, set its keystone, then
// add it to the opened map.
circuit, ok := pending[inKey]
if ok {
circuit.Outgoing = outKey
opened[*outKey] = circuit
} else {
strayKeystones = append(strayKeystones, Keystone{
InKey: inKey,
OutKey: *outKey,
})
}
return nil
}); err != nil {
return err
}
// If any stray keystones were found, we'll proceed to prune
// them from the circuit map's persistent storage. This may
// manifest on older nodes that had updated channels before
// their short channel id was set properly. We believe this
// issue has been fixed, though this will allow older nodes to
// recover without additional intervention.
for _, strayKeystone := range strayKeystones {
// As a precaution, we will only cleanup keystones
// related to locally-initiated payments. If a
// documented case of stray keystones emerges for
// forwarded payments, this check should be removed, but
// with extreme caution.
if strayKeystone.OutKey.ChanID != hop.Source {
continue
}
log.Infof("Removing stray keystone: %v", strayKeystone)
err := keystoneBkt.Delete(strayKeystone.OutKey.Bytes())
if err != nil {
return err
}
}
return nil
}, func() {
opened = make(map[CircuitKey]*PaymentCircuit)
pending = make(map[CircuitKey]*PaymentCircuit)
}); err != nil {
return err
}
cm.pending = pending
cm.opened = opened
cm.closed = make(map[CircuitKey]struct{})
log.Infof("Payment circuits loaded: num_pending=%v, num_open=%v",
len(pending), len(opened))
// Finally, reconstruct the hash index by running through our set of
// open circuits.
cm.hashIndex = make(map[[32]byte]map[CircuitKey]struct{})
for _, circuit := range opened {
cm.addCircuitToHashIndex(circuit)
}
return nil
}
// decodeCircuit reconstructs an in-memory payment circuit from a byte slice.
// The byte slice is assumed to have been generated by the circuit's Encode
// method. If the decoding is successful, the onion obfuscator will be
// reextracted, since it is not stored in plaintext on disk.
func (cm *circuitMap) decodeCircuit(v []byte) (*PaymentCircuit, error) {
var circuit = &PaymentCircuit{}
circuitReader := bytes.NewReader(v)
if err := circuit.Decode(circuitReader); err != nil {
return nil, err
}
// If the error encrypter is nil, this is locally-source payment so
// there is no encrypter.
if circuit.ErrorEncrypter == nil {
return circuit, nil
}
// Otherwise, we need to reextract the encrypter, so that the shared
// secret is rederived from what was decoded.
err := circuit.ErrorEncrypter.Reextract(
cm.cfg.ExtractErrorEncrypter,
)
if err != nil {
return nil, err
}
return circuit, nil
}
// trimAllOpenCircuits reads the set of active channels from disk and trims
// keystones for any non-pending channels using the next unallocated htlc index.
// This method is intended to be called on startup. Each link will also trim
// it's own circuits upon startup.
//
// NOTE: This operation will be applied to the persistent state of all active
// channels. Therefore, it must be called before any links are created to avoid
// interfering with normal operation.
func (cm *circuitMap) trimAllOpenCircuits() error {
activeChannels, err := cm.cfg.FetchAllOpenChannels()
if err != nil {
return err
}
for _, activeChannel := range activeChannels {
if activeChannel.IsPending {
continue
}
// First, skip any channels that have not been assigned their
// final channel identifier, otherwise we would try to trim
// htlcs belonging to the all-zero, hop.Source ID.
chanID := activeChannel.ShortChanID()
if chanID == hop.Source {
continue
}
// Next, retrieve the next unallocated htlc index, which bounds
// the cutoff of confirmed htlc indexes.
start, err := activeChannel.NextLocalHtlcIndex()
if err != nil {
return err
}
// Finally, remove all pending circuits above at or above the
// next unallocated local htlc indexes. This has the effect of
// reverting any circuits that have either not been locked in,
// or had not been included in a pending commitment.
err = cm.TrimOpenCircuits(chanID, start)
if err != nil {
return err
}
}
return nil
}
// TrimOpenCircuits removes a channel's keystones above the short chan id's
// highest committed htlc index. This has the effect of returning those
// circuits to a half-open state. Since opening of circuits is done in advance
// of actually committing the Add htlcs into a commitment txn, this allows
// circuits to be opened preemptively, since we can roll them back after any
// failures.
func (cm *circuitMap) TrimOpenCircuits(chanID lnwire.ShortChannelID,
start uint64) error {
log.Infof("Trimming open circuits for chan_id=%v, start_htlc_id=%v",
chanID, start)
var trimmedOutKeys []CircuitKey
// Scan forward from the last unacked htlc id, stopping as soon as we
// don't find any more. Outgoing htlc id's must be assigned in order,
// so there should never be disjoint segments of keystones to trim.
cm.mtx.Lock()
for i := start; ; i++ {
outKey := CircuitKey{
ChanID: chanID,
HtlcID: i,
}
circuit, ok := cm.opened[outKey]
if !ok {
break
}
circuit.Outgoing = nil
delete(cm.opened, outKey)
trimmedOutKeys = append(trimmedOutKeys, outKey)
cm.removeCircuitFromHashIndex(circuit)
}
cm.mtx.Unlock()
if len(trimmedOutKeys) == 0 {
return nil
}
return kvdb.Update(cm.cfg.DB, func(tx kvdb.RwTx) error {
keystoneBkt := tx.ReadWriteBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
for _, outKey := range trimmedOutKeys {
err := keystoneBkt.Delete(outKey.Bytes())
if err != nil {
return err
}
}
return nil
}, func() {})
}
// LookupCircuit queries the circuit map for the circuit identified by its
// incoming circuit key. Returns nil if there is no such circuit.
func (cm *circuitMap) LookupCircuit(inKey CircuitKey) *PaymentCircuit {
cm.mtx.RLock()
defer cm.mtx.RUnlock()
return cm.pending[inKey]
}
// LookupOpenCircuit searches for the circuit identified by its outgoing circuit
// key.
func (cm *circuitMap) LookupOpenCircuit(outKey CircuitKey) *PaymentCircuit {
cm.mtx.RLock()
defer cm.mtx.RUnlock()
return cm.opened[outKey]
}
// LookupByPaymentHash looks up and returns any payment circuits with a given
// payment hash.
func (cm *circuitMap) LookupByPaymentHash(hash [32]byte) []*PaymentCircuit {
cm.mtx.RLock()
defer cm.mtx.RUnlock()
var circuits []*PaymentCircuit
if circuitSet, ok := cm.hashIndex[hash]; ok {
// Iterate over the outgoing circuit keys found with this hash,
// and retrieve the circuit from the opened map.
circuits = make([]*PaymentCircuit, 0, len(circuitSet))
for key := range circuitSet {
if circuit, ok := cm.opened[key]; ok {
circuits = append(circuits, circuit)
}
}
}
return circuits
}
// CommitCircuits accepts any number of circuits and persistently adds them to
// the switch's circuit map. The method returns a list of circuits that had not
// been seen prior by the switch. A link should only forward HTLCs corresponding
// to the returned circuits to the switch.
//
// NOTE: This method uses batched writes to improve performance, gains will only
// be realized if it is called concurrently from separate goroutines.
func (cm *circuitMap) CommitCircuits(circuits ...*PaymentCircuit) (
*CircuitFwdActions, error) {
inKeys := make([]CircuitKey, 0, len(circuits))
for _, circuit := range circuits {
inKeys = append(inKeys, circuit.Incoming)
}
log.Tracef("Committing fresh circuits: %v", newLogClosure(func() string {
return spew.Sdump(inKeys)
}))
actions := &CircuitFwdActions{}
// If an empty list was passed, return early to avoid grabbing the lock.
if len(circuits) == 0 {
return actions, nil
}
// First, we reconcile the provided circuits with our set of pending
// circuits to construct a set of new circuits that need to be written
// to disk. The circuit's pointer is stored so that we only permit this
// exact circuit to be forwarded through the switch. If a circuit is
// already pending, the htlc will be reforwarded by the switch.
//
// NOTE: We track an additional addFails subsequence, which permits us
// to fail back all packets that weren't dropped if we encounter an
// error when committing the circuits.
cm.mtx.Lock()
var adds, drops, fails, addFails []*PaymentCircuit
for _, circuit := range circuits {
inKey := circuit.InKey()
if foundCircuit, ok := cm.pending[inKey]; ok {
switch {
// This circuit has a keystone, it's waiting for a
// response from the remote peer on the outgoing link.
// Drop it like it's hot, ensure duplicates get caught.
case foundCircuit.HasKeystone():
drops = append(drops, circuit)
// If no keystone is set and the switch has not been
// restarted, the corresponding packet should still be
// in the outgoing link's mailbox. It will be delivered
// if it comes online before the switch goes down.
//
// NOTE: Dropping here prevents a flapping, incoming
// link from failing a duplicate add while it is still
// in the server's memory mailboxes.
case !foundCircuit.LoadedFromDisk:
drops = append(drops, circuit)
// Otherwise, the in-mem packet has been lost due to a
// restart. It is now safe to send back a failure along
// the incoming link. The incoming link should be able
// detect and ignore duplicate packets of this type.
default:
fails = append(fails, circuit)
addFails = append(addFails, circuit)
}
continue
}
cm.pending[inKey] = circuit
adds = append(adds, circuit)
addFails = append(addFails, circuit)
}
cm.mtx.Unlock()
// If all circuits are dropped or failed, we are done.
if len(adds) == 0 {
actions.Drops = drops
actions.Fails = fails
return actions, nil
}
// Now, optimistically serialize the circuits to add.
var bs = make([]bytes.Buffer, len(adds))
for i, circuit := range adds {
if err := circuit.Encode(&bs[i]); err != nil {
actions.Drops = drops
actions.Fails = addFails
return actions, err
}
}
// Write the entire batch of circuits to the persistent circuit bucket
// using bolt's Batch write. This method must be called from multiple,
// distinct goroutines to have any impact on performance.
err := kvdb.Batch(cm.cfg.DB, func(tx kvdb.RwTx) error {
circuitBkt := tx.ReadWriteBucket(circuitAddKey)
if circuitBkt == nil {
return ErrCorruptedCircuitMap
}
for i, circuit := range adds {
inKeyBytes := circuit.InKey().Bytes()
circuitBytes := bs[i].Bytes()
err := circuitBkt.Put(inKeyBytes, circuitBytes)
if err != nil {
return err
}
}
return nil
})
// Return if the write succeeded.
if err == nil {
actions.Adds = adds
actions.Drops = drops
actions.Fails = fails
return actions, nil
}
// Otherwise, rollback the circuits added to the pending set if the
// write failed.
cm.mtx.Lock()
for _, circuit := range adds {
delete(cm.pending, circuit.InKey())
}
cm.mtx.Unlock()
// Since our write failed, we will return the dropped packets and mark
// all other circuits as failed.
actions.Drops = drops
actions.Fails = addFails
return actions, err
}
// Keystone is a tuple binding an incoming and outgoing CircuitKey. Keystones
// are preemptively written by an outgoing link before signing a new commitment
// state, and cements which HTLCs we are awaiting a response from a remote
// peer.
type Keystone struct {
InKey CircuitKey
OutKey CircuitKey
}
// String returns a human readable description of the Keystone.
func (k *Keystone) String() string {
return fmt.Sprintf("%s --> %s", k.InKey, k.OutKey)
}
// OpenCircuits sets the outgoing circuit key for the circuit identified by
// inKey, persistently marking the circuit as opened. After the changes have
// been persisted, the circuit map's in-memory indexes are updated so that this
// circuit can be queried using LookupByKeystone or LookupByPaymentHash.
func (cm *circuitMap) OpenCircuits(keystones ...Keystone) error {
if len(keystones) == 0 {
return nil
}
log.Tracef("Opening finalized circuits: %v", newLogClosure(func() string {
return spew.Sdump(keystones)
}))
// Check that all keystones correspond to committed-but-unopened
// circuits.
cm.mtx.RLock()
openedCircuits := make([]*PaymentCircuit, 0, len(keystones))
for _, ks := range keystones {
if _, ok := cm.opened[ks.OutKey]; ok {
cm.mtx.RUnlock()
return ErrDuplicateKeystone
}
circuit, ok := cm.pending[ks.InKey]
if !ok {
cm.mtx.RUnlock()
return ErrUnknownCircuit
}
openedCircuits = append(openedCircuits, circuit)
}
cm.mtx.RUnlock()
err := kvdb.Update(cm.cfg.DB, func(tx kvdb.RwTx) error {
// Now, load the circuit bucket to which we will write the
// already serialized circuit.
keystoneBkt := tx.ReadWriteBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
for _, ks := range keystones {
outBytes := ks.OutKey.Bytes()
inBytes := ks.InKey.Bytes()
err := keystoneBkt.Put(outBytes, inBytes)
if err != nil {
return err
}
}
return nil
}, func() {})
if err != nil {
return err
}
cm.mtx.Lock()
for i, circuit := range openedCircuits {