-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqg.tex
executable file
·1650 lines (1314 loc) · 64.6 KB
/
qg.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%!TEX root = all.tex
\chapter{Quasigeodesics %ready
}\label{chap:qg}
The class of quasigeodesics%
\footnote{It should be noted that the class of quasigeodesics described here
has nothing to do with the Gromov's quasigeodesics in $\delta$-hyperbolic spaces.}
generalizes the class of geodesics to nonsmooth metric spaces.
This class of curves was first considered for $2$-dimensional convex hypersurfaces in the Euclidean space
by Alexandrov in \cite{alexandrov:qg}.
Alexandrov defined quasigeodesics as curves which ``turn'' right and left simultaneously.
This type of curves was studied further in \cite{pogorelov:qg}, \cite{alexandrov-burago},
\cite{milka:qg}.
Later, it was generalized to surfaces with bounded integral
curvature \cite{alexandrov:int-qg} and to multidimensional polyhedral spaces \cite{milka:poly1},
\cite{milka:poly2}.
A. D. Milka gave a characterization of quasigeodesics using notion of development (\ref{def:devel}).
This characterization made it possible to define quasigeodesics multi-dimensional Alexandrov's spaces;
this was first done in Petrunin's master thesis and developed further in \cite{perelman-petrunin:qg}.
In Alexandrov's spaces, quasigeodesics behave more naturally than geodesics, mainly:
\begin{itemize}
\item There is a quasigeodesic starting in any direction from any point (\ref{thm:exist-qg}).
\item The limit of quasigeodesics is a quasigeodesic (\ref{cor:lim-length:qg}).
\end{itemize}
These two property make quasigeodesics to be a useful technical tool.
Also due to the generalized Lieberman lemma (\ref{lib-lem}),
they are useful in the study of length-metric of extremal subsets,
in particular the boundary of Alexandrov's space.
There is an overlap in the applications of quasigeodesics and gradient
exponent, defined in Section~\ref{sec:gexp}.
A good example is the proof of
Theorem~\ref{thm:dist-to-bry}, see footnote~\ref{qg-grad},
page~\pageref{qg-grad}.
In this type of argument, radial curves give a simpler tool,
which is also
superior since it works in infinitely dimensional Alexandrov's spaces.
\section{Convex curves and quasigeodesics}
In this secion we define \emph{$\kappa$-convex curves} and \emph{$\kappa$-quasigeodesics}.
Roughly, a curve is called $\kappa$-convex if it satisfy the same comparison as geodesic in $\CBB{}\kappa$-space.
If in addition it is a unit-speed curve, then it is called $\kappa$-quasigeodesic.
\begin{thm}{Definition}\label{def:k-convex.curve}
Let
$\spc{L}\in\CBB m\kappa$
and $\beta\:\II\to \spc{L}$ be a curve.
We say that $\beta$ is \emph{$\kappa$-convex}\index{convex!$\kappa$-convex curve} if for any $p\in \spc{L}$ the function
\[y_p(t)=\md\kappa\dist[{{}}]{p}{\beta(t)}{}\]
satisfies differential inequality $y_p''+\kappa\cdot y_p\le 1$ for all $t\in\II$ such that $\dist{p}{\beta(t)}{}\z<\varpi\kappa$.
If in addition $\beta$ is a unit-speed curve then it is called \emph{$\kappa$-quasigeodesic}\index{quasigeodesic!$\kappa$-quasigeodesic}.
\end{thm}
In Section~\ref{sec:qg-inv.def},
we give an invariant definition of quasigeodesics;
once equivalence of these definitions is proved, the parameter $\kappa$ in the definition of $\kappa$-quasigeodesic can be omited.
In Theorem~\ref{thm:defs.of.k-convex.curve},
we will give a number of reformulations of the above definition in terms of angle comparison and development.
Let us list some examples of $\kappa$-convex curves and $\kappa$-quasigeodesics:
\begin{itemize}
\item From function comparison \ref{thm:conc}, any local geodesic in $\CBB{m}{\kappa}$-space is a $\kappa$-\nospace quasigeodesic as well as $\kappa$-convex curve.
\item If $\diam \spc{L}\le \tfrac{\varpi\kappa}{2}$ then any constant curve in $\spc{L}$ is $\kappa$-convex.
In particular, if $\kappa\le0$ then any constant curve is $\kappa$-convex.
\item
Let $\spc{L}$ be isometric to a convex figure in a Euclidean plane.
Then any billiard trajectory in $\spc{L}$ as well as arc of its boundary equipped with a unit-speed parametrization forms a quasigeodesic in $\spc{L}$.
\item A joint of two rays in a 2-dimensional cone is a quasigeodesic if they cut form the cone two angles with angle measure $\le\pi$.
\end{itemize}
\medskip
Now let us turn to differentiability of $\kappa$-convex curves, see Definition~\ref{def:diff-curv}.
Let us remind that two vectors $v$ and $w$ in the tangent space $\T_p$ are called \emph{opposite} (briefly $v+w=0$)
if $|v|=|w|$ and $\mangle(v,w)=\pi$, see Definition~\ref{def:opp+Lin}.
To formulate the next theorem, we need to define the following weak analog of opposite vectors.
\begin{thm}{Definition}\label{def:polar}
Let $\spc{L}\in \CBB{}{}$,
$p\in \spc{L}$
and $v,w\in \T_p$.
We say that $v$ is \emph{polar}\index{polar} to $w$ if
\[\<x,v\>+\<x,w\>\ge0\]
for any vector $x\in\T_p$.
\end{thm}
\begin{thm}{Theorem}\label{thm:k-conc=lip}
Let $\spc{L}\in\CBB m\kappa$
and $\beta\:\II\to \spc{L}$ be a $\kappa$-convex curve,
then
\begin{subthm}{thm:k-conc=lip-exist} $\beta$ is \emph{both-side differentiable}\index{both-side differentiable}; in particular, $\beta^+(t_0)$ and $\beta^-(t_0)$ are defined for any interior value $t_0$ of $\II$,
\end{subthm}
\begin{subthm}{thm:k-conc=lip-diff}$\beta$ is differentiable at all but countable subset of values in $\II$; i.e., for some countable set $A\subset \II$, we have $\beta^+(t_0)+\beta^-(t_0)=0$
for any $t\in \II\backslash A$.
\end{subthm}
\begin{subthm}{thm:k-conc=lip-polar} For each interior value $t_0$ of $\II$,
vector $\beta^+(t_0)$ is polar to $\beta^-(t_0)$.
\end{subthm}
\begin{subthm}{thm:k-conc=lip-lip} $\beta$ is a $1$-Lipschitz curve.
\subitem In particular, $|\beta^\pm(t_0)|\le 1$.
\end{subthm}
\end{thm}
\parit{Proof.}
Set $p=\beta(t_0)$ and $y_q(t)=\md\kappa(\dist{q}{\beta(t)}{})$ for $q\in \spc{L}$.
\parit{(\ref{SHORT.thm:k-conc=lip-lip}).} If $t_0$ is an interior value of $\II$,
from the barrier inequality (\ref{barrier}), for any $|t-t_0|<\varpi\kappa$ we have
$y_p(t)\le \md\kappa(t-t_0)$ or, equivalently $\dist{\beta(t_0)}{\beta(t)}{}\le |t-t_0|$.
\parit{(\ref{SHORT.thm:k-conc=lip-exist})+(\ref{SHORT.thm:k-conc=lip-diff}).} Since
the function $y_q$ is semiconcave, it is both-side differentiable at any $t$ such that $0<\dist{q}{\beta(t)}{}<\varpi\kappa$.
Moreover, it is differentable at all but countable subset of such values $t$.
Clearly, the same remains true for the function $\dist{q}{}{}\circ\beta$.
It remains to apply \ref{lem:count-der} for a dense countable subset $Q$ of $\oBall(p,\varpi\kappa)$; the existance of such $Q$ follows from \ref{cor:dim>proper}.
\parit{(\ref{SHORT.thm:k-conc=lip-polar}).} It is sufficient to prove that for any geodesic direction $\xi$ we have
\[\<\xi,\beta^+\>+\<\xi,\beta^+\>\ge 0.\eqlbl{eq:geod-polar}\]
Choose $q\in \Str(p)$ so that $\xi=\dir p q$ is uniquely defined.
From \ref{thm:d_q dist_p(v)=-<dri p q, v>}, we have $(\d_p\dist{q}{}{})(x)\z=-\<\xi,x\>$.
Since $y_q$ is semiconcave, $y_q^+(t_0)+y_q^-(t_0)\le 0$.
Further,
\[y^\pm_q(t_0)=-\sn\kappa\dist[{{}}]{p}{q}{}\cdot\<\xi,\beta^\pm(t_0)\>\]
and \ref{eq:geod-polar} follows.\qeds
\parbf{Arc-point model angle.}
Let us introduce a new shortcut notation for model angle.
Assume $\alpha\:\II\to \spc{X}$ is a $1$-Lipschitz curve $t_0, t\in \II$
and $p$ is a point in a metric space $\spc{X}$.
Consider a triangle in $\Lob{2}{\kappa}$ with sides
$|t-t_0|$, $\dist{q}{\alpha(t_0)}{}$ and $\dist{q}{\alpha(t)}{}$
and denote by $\tangle\mc\kappa(\alpha|_{t_0}^{t},p)$\index{$\tangle\mc\kappa$!$\tangle\mc\kappa({*}\vert_{*}^{*},{*})$} the angle at the vertex corresponding to $\alpha(t_0)$.
It will be called \emph{arc-point model angle}\index{arc-point model angle}\index{model angle!arc-point model angle} for arc $\alpha|_{t_0}^{t}$ and point $p$.
In other words,
\[\tangle\mc\kappa(\alpha|_{t_0}^{t},p)
\df
\tangle\mc\kappa\{\dist{p}{\alpha(t)}{};\dist{p}{\alpha(t_0)}{},|t-t_0|\},\]
where $\tangle\mc\kappa\{a;b,c\}$ is defined in Section~\ref{model}.
Note that
\begin{itemize}
\item If the angle $\tangle\mc\kappa(\alpha|_{t_0}^{t_1},p)$ is defined then $\tangle\mc\kappa(\alpha|_{t_0}^{t},p)$ is defined for any $t$ between $t_0$ and $t_1$.
\item If one fixes $p$ and $t_0$ such that $\dist{p}{\gamma(t_0)}{}<\varpi\kappa$, then the angle $\tangle\mc\kappa(\alpha|_{t_0}^{t},p)$ is defined once $|t-t_0|>0$ is sufficiently small.
\item If $\phi=\lim_{t\to t_0+}\tangle\mc\kappa(\alpha|_{t_0}^{t},p)$ is defined then
$$\cos\phi=-(\dist{p}{}{}\circ\alpha)^+(t_0).$$
\end{itemize}
\begin{thm}{Theorem}\label{thm:defs.of.k-convex.curve}
Let $\spc{L}\in \CBB m \kappa$
and
$\beta\:\II\to \spc{L}$ be a $1$-Lipschitz curve.
Then the following conditions are equivalent:
\begin{subthm}{k-convex-main} $\beta$ is $\kappa$-convex.
\end{subthm}
\begin{subthm}{k-convex-mono} For any $t_0\in\II$ and $p\not=\beta(t_0)$,
the subfunction
\[\tau \mapsto\tangle\mc\kappa(\beta|_{t_0}^{t_0+\tau},p)\]
is non-increasing for $\tau>0$.
\end{subthm}
\begin{subthm}{k-convex-angle} $\beta$ is both-side differentiable, and vector $\beta^+(t_0)$ is polar to $\beta^-(t_0)$ at each interior value $t_0\in \II$.
Moreover, for any $t_0\in\II$ and $p\not=\beta(t_0)$, inequalities
\[\<\dir{\beta(t_0)}p,\beta^\pm(t_0)\>
\le
\cos\tangle\mc\kappa(\beta|_{t_0}^{t_0\pm\tau}, p)\]
hold for $\tau>0$; once the right hand side is defined.
\end{subthm}
\begin{subthm}{k-convex-devel} For any subinterval $[a,b]\subset\II$ and point $p\in \spc{L}$,
if the $\kappa$-developing of the restriction $\beta|[a,b]$
with respect to $p$ is defined then it is locally convex.
\end{subthm}
Moreover, if in addition $\beta$ is a unit-speed curve then each of the conditions (\ref{SHORT.k-convex-main})--(\ref{SHORT.k-convex-devel}) imply that $\beta$ is a $\kappa$-quasigeodesic.
In this case the inequality in (\ref{SHORT.k-convex-angle}) can be also rewritten the following way:
\begin{itemize}
\item[\textit{\ref{SHORT.k-convex-angle}$'$)}] $\mangle(\dir{\beta(t_0)}p,\beta^\pm(t_0))
\ge \tangle\mc\kappa(\beta|_{t_0}^{t_0\pm\tau}, p).$
\end{itemize}
\end{thm}
\parbf{Remark.}
The inequality (\ref{SHORT.k-convex-angle}$'$) states that in a ``triangle'', one side of which is a quasigeodesic and two other sides are geodesics, one has usual comparison for the angle adjacent to the quasigeodesic.
Note however, that it gives no controle on the angle between geodesic sides in this triangle.
\parit{Proof.} Equivalence {\it (\ref{SHORT.k-convex-main})$\Leftrightarrow$(\ref{SHORT.k-convex-mono})} follows from Alexandrov's lemma (\ref{lem:alex}) and description of solution $y''+\kappa\cdot y\le 1$ through Jensen inequality (\ref{y''-mono}).
The equivalence {\it(\ref{SHORT.k-convex-main})$\Leftrightarrow$(\ref{SHORT.k-convex-angle})} is essentially description of solution $y''+\kappa\cdot y\le 1$ trough barrier inequality (\ref{barrier}).
The implementations {\it(\ref{SHORT.k-convex-angle})$\Rightarrow$(\ref{SHORT.k-convex-devel})$\Rightarrow$(\ref{SHORT.k-convex-mono})} can be proved the same way as Development comparison (\ref{thm:devel}).
The last statement will follow from \ref{cor:|gamma'|=1}.%???REF TO SOMETHING LATER IN THE CHAPTER???
\qeds
\section{Passage to the limit}
The following proposition follows directly from the definition of $\kappa$-convex curve (\ref{def:k-convex.curve}) and Theorem~\ref{thm:k-conc=lip-lip}.
\begin{thm}{Proposition}\label{prop:lim-length}
Let
$\spc{L}_n\in\CBB m{\kappa_n}$,
$\spc{L}_n\GHto \spc{L}_\infty$
and $\kappa_n\to\kappa_\infty\in\RR$.
Assume $\beta_n\:\II\to \spc{L}_n$ be a sequence of $\kappa_n$-convex curves
and $\beta_n(t)\to \beta_\infty(t)$ for all $t\in\II$.
Then $\beta_\infty$ is a $\kappa_\infty$-convex curve in $\spc{L}_\infty$.
\end{thm}
Here is the main theorem in this section.
\begin{thm}{Theorem}\label{thm:lim-length}
Let
$\spc{L}_n\in\CBB m{\kappa_n}$,
$\spc{L}_n\GHto \spc{L}_\infty$ be noncollapsing (i.e., $\dim\spc{L}_\infty=m$)
and $\kappa_n\to\kappa_\infty\in\RR$.
Assume $\beta_n\:\II\to \spc{L}_n$ be a sequence of $\kappa_n$-convex curves
and $\beta_n(t)\to \beta_\infty(t)$ for all $t\in\II$.
Then if $\beta_\infty\:\II\to\spc{L}_\infty$ is differentiable at an interior value $t_0\in\II$
then
\[|\beta^+(t_0)|=|\beta^-(t_0)|=\lim_{n\to\infty} |\beta_n^\pm(t_0)|.\]
\end{thm}
Before giving a proof, let us give couple of corollaries.
\begin{thm}{Corollaries}\label{cor:lim-length}
Let
$\spc{L}_n\in\CBB m{\kappa_n}$,
$\spc{L}_n\GHto \spc{L}_\infty$ be noncollapsing (i.e., $\dim\spc{L}_\infty=m$)
and $\kappa_n\to\kappa_\infty\in\RR$.
Assume $\beta_n\:\II\to \spc{L}_n$ be a sequence of $\kappa_n$-convex curves
and $\beta_n(t)\to \beta_\infty(t)$ for all $t\in\II$.
Then
\begin{subthm}{}
\[|\beta_\infty^\pm(t)|
=
\lim_{n\to\infty}|\beta_n^\pm(t)|\]
for all but countable set of values $t\in\II$.
\end{subthm}
\begin{subthm}{}
$\length\beta_n\to\length\beta_\infty$ as $n\to\infty$.
\end{subthm}
\begin{subthm}{cor:lim-length:qg}
If in addition $\beta_n\:\II\to \spc{L}_n$ be a sequence of $\kappa_n$-quasigeodesics
then $\beta_\infty\:\II\to \spc{L}$ is a $\kappa_\infty$-quasigeodesic.
\end{subthm}
\end{thm}
\parit{Proof.}
Follows from Theorem~\ref{thm:lim-length},
Proposition \ref{prop:lim-length}
and Theorem~\ref{thm:k-conc=lip-diff}.
\qeds
\begin{thm}{Corollary}\label{cor:one-side-cont}\label{cor:|gamma'|=1}
Let
$\spc{L}\in \CBB m \kappa$
and $\beta\:\II\to \spc{L}$ be a $\kappa$-convex curve.
Then for any $t_0\in \II$, we have
\begin{align*}
|\beta^+(t_0)| &= \lim_{t\to t_0+}|\beta^\pm(t)|,\ \ &|\beta^-(t_0)| &= \lim_{t\to t_0-}|\beta^\pm(t)|.
\end{align*}
In particular, if $\beta\:\II\to \spc{L}$ is a $\kappa$-quasigeodesic then $|\beta^\pm(t)|\equiv1$ for all $t\in \II$
with the exception for the ends of $\II$,
where one of derivatives is not defined.
\end{thm}
\parit{Proof.}
We will prove the first identity.
Without loss of generality we can assume $t_0=0$ and $\II=[0,1]$.
Set $p=\beta(0)$.
From \ref{thm:k-conc=lip-lip}, $|\beta^\pm(t)|\le 1$ for any $t$.
Thus, it is sufficient to show that for any sequence $t_n\to0+$ such that $|\beta^\pm(t_n)|$ converges we have
$$|\beta^+(0)|=\lim_{n\to\infty}|\beta^\pm(t_n)|.$$
Consider sequence of blowups $\spc{L}_n=\frac{1}{t_n}\blow \spc{L}$ with sequence of
curves
$$\beta_n\:[0,\tfrac1{t_n}]\to \spc{L}_n\:s\z\mapsto\tfrac{1}{t_n}\blow \beta(t_n\cdot s).$$
Note that $\spc{L}_n\in\CBB{m}{(t_n)^2\cdot\kappa}$
and $\beta_n(s)$ is $(t_n)^2\cdot\kappa$-convex curve.
For the canonical convergence $\spc{L}_n\GHto \T_p$ defined in \ref{thm:approx4tan},
the sequence of curves $\beta_n\:[0,\tfrac1{t_n}]\to \spc{L}_n$ converges to
$$\beta_\infty\:[0,\infty)\to\T_p\:s\mapsto
s\cdot \beta^+(0).
$$
Note that $|\beta_\infty^\pm(1)|=|\beta^+(0)|$ and $\beta_\infty$ is differentiable at $1$.
Thus applying Theorem~\ref{thm:lim-length},
we get
\[|\beta^\pm(t_n)|
=
|\beta_n^\pm(1)|
\xto[n\to\infty]{}
|\beta^\pm_\infty(1)|
=
|\beta^+(0)|.
\]
Now if $\beta$ is a $\kappa$-quasigeodesic then it is a unit-speed curve.
From \ref{vel-length}, $|\beta^\pm(t)|\ae 1$.
Applying the proved identity, we get that the identity $|\beta^\pm(t)|\equiv1$ holds everywhere.
\qeds
In the proof of the theorem we will use the followng lemma.
%The proof is left to the reader.???In fact the depends on how volume part is written, so I can not write it yet???
\begin{thm}{Lemma}\label{lem:<x,v>=<x,w> => v=w}
Let $K=\Cone\Sigma\in\CBB{m}{0}$ and $v,w\in K$.
Assume that equality
\[\<v,x\>=\<w,x\>\]
holds for $x$ in a subset $E\subset K$ of positive volume
then $v=w$.
\end{thm}
\parit{Proof.} To be written.%???To be written???
\qeds
\parit{Proof Theorem~\ref{thm:lim-length}.}
It is sufficient to show that
$|\beta_n^\pm(t_0)|\to |\beta_\infty^\pm(t_0)|$ as $n\to\o$
for some selective utrafilter $\o$.
Set
\begin{enumerate}[(a)]
\item $p_\infty=\beta_\infty(t_0)$, $p_n=\beta_n(t_0)$;
\item $(K_\o,0)=\lim_{n\to\o}(\T_{p_n},0)$;
\item\label{beta->w} $\beta_n^\pm(t_0)\to w_\pm\in K_\o$ as $n\to\o$.
\end{enumerate}
We will construct a map $\map\:\T_{p_\infty}\to K_\o$ which satisfies the following properties:
\begin{enumerate}[(i)]
\item\label{map is a conic map} It is a \emph{conic map}\index{conic map}; i.e., $\map(r\cdot x)=r\cdot\map(x)$ for all $r\ge 0$ and $x\in \T_{p_\infty}$.
\item\label{map is a norm-preserving} It is norm-preserving;
i.e., $|\map(x)|=|x|$ for any $x\in \T_{p_\infty}$.
\item\label{map is a non-contracting} It is non-contracting;
i.e. $\dist{\map(x)}{\map(y)}{}\ge\dist{x}{y}{}$
for any $x,y\in \T_{p_\infty}$.
\item\label{the claim for map} for any $z\in\map(\T_{p_\infty})$, we have
\[\<z,w_\pm\>
=\<z,\map(\beta_\infty^\pm(t_0))\>.\]
\end{enumerate}
Once $\map$ is constructed,
Lemma~\ref{lem:<x,v>=<x,w> => v=w}
and properties (\ref{map is a non-contracting}) and (\ref{the claim for map}) imply $$\map(\beta_\infty^\pm(t_0))=w_\pm.$$
By property (\ref{map is a norm-preserving}),
\[
|w_\pm|
=
|\beta_\infty^\pm(t_0)|.\]
Further, by (\ref{beta->w}),
\[|\beta_n^\pm(t_0)|
\xto[n\to\o]{}
|\beta_\infty^\pm(t_0)|;\]
i.e., once the map $\map\:\T_{p_\infty}\to K_\o$ is constructed,
the theorem follows.
\parit{Construction of $\map$.}
Set
$$\Sigma_\o=\lim_{n\to\o}\Sigma_{p_n};$$
clearly $K_\o=\Cone\Sigma_\o$.
According to Corollary~\ref{cor:S>Sigma}, $\Sigma_{p_n}\le \SS^{m-1}$ for each $n$;
thereofre $\Sigma_\o\le \SS^{m-1}$.
In particular $\Sigma_\o$ is compact.
Choose $q_\infty\in \Str (p_\infty)$,
so the geodesic $[p_\infty q_\infty]$ is uniquely defined.
Set $\xi_\infty=\dir {p_\infty}{q_\infty}$.
Further, choose a sequence of points $q_n\in \Str(p_n)$ so that $q_n\GHto q_\infty$ and set $\xi_n=\dir{p_n}{q_n}$.
Finally set
\[\map (\xi_\infty)=\lim_{n\to\o}\xi_n.\]
The value $\map(\xi_\infty)\in\Sigma_\o$ depends on choice of point $q_\infty$ and the choice of sequence $(q_n)$.
But we can fix such choices for each direction $\xi_\infty\in\Sigma'_p$;
recal that $\Sigma'_p$ denotes the set of geodesic directions in $\Sigma_p$.
Since $[p_\infty q_\infty]$ is unique, we have $[p_n q_n]\to[p_\infty q_\infty]$.
From angle semicontinuity (\ref{lem:ang.semicont-cbb}),
the map $\map\:\Sigma'_{p_\infty}\to\Sigma_\o$ is non-contracting.
For a non-geodesic direction $\zeta\in\Sigma_{p_\infty}$,
fix a sequence of geodesic directions $\zeta_n\to\zeta$ and set $\map(\zeta)$ to be a partial limit of $\map(\zeta_n)$ as $n\to\infty$.
The pratial limit exists since $\Sigma_\o$ is compact.
This way we extended the map $\map$ to $\Sigma_{p_\infty}$ keeping it noncontracting.
Finally, let us extend $\map$ to a conic map $\map\:\T_{p_\infty}\to K_\o$ by setting
$$\map(r\cdot\zeta)=r\cdot\map(\zeta)$$
for all $r\ge0$ and $\zeta\in\Sigma_{p_\infty}$.
\medskip
Now let us show that the constructed map $\map$ satisfies the conditions.
The conditions (\ref{map is a conic map})--(\ref{map is a non-contracting}) follow directly from the construction.
To prove (\ref{the claim for map}),
it is sufficient to show that equality
\[\<\map(\xi_\infty),w_\pm\>=\<\map(\xi_\infty),\map(\beta_\infty^\pm(t_0))\>\]
holds for any geodesic directions $\xi_\infty$.
Let $q_\infty$, $(q_n)$ and $(\xi_n)$ be as in the construction of $\map$ above.
Set
\begin{align*}
f_\infty(t)&=\dist{q_\infty}{\beta_\infty(t)}{},
& f_n(t)&=\dist{q_n}{\beta_n(t)}{}.\\
\intertext{Clearly, $f_n\to f_\infty$.
Since $q_\infty\in \Str(p_\infty)$ and $q_n\in \Str_n(p_n)$, \ref{thm:d_q dist_p(v)=-<dri p q, v>} implies}
(\d_{p_\infty}\dist{q_\infty}{}{})(x)&\equiv-\<\xi_\infty,x\>,
&(\d_{p_n}\dist{q_n}{}{})(x)&\equiv-\<{\xi_n},x\>.
\intertext{Thus, the functions $f_\infty$ is differentiable at $t_0$ and}
f_\infty'(t_0)&=\mp\<\xi_\infty,\beta_\infty^\pm(t_0)\>,
& f^\pm_n(t_0)&=-\<\xi_n,\beta^\pm_n(t_0)\>.
\end{align*}
Set $y_\infty=\md\kappa\circ f_\infty$ and $y_n=\md\kappa\circ f_n$.
Since $\beta_\infty$ is $\kappa_\infty$-convex and $\beta_n$ are $\kappa_n$-convex,
we have
\begin{align*}
y_\infty''+\kappa_\infty\cdot y_\infty&\le 1
&
y_n''+\kappa_n\cdot y_n&\le 1
\end{align*}
Therefore, according to the lemma on equilibrium (\ref{lem:der-conv-lim}), $y_n^\pm(t_0)\to \pm y'(t_0)$ and hence
$f_n^\pm(t_0)\to \pm f_\infty'(t_0)$ as $n\to\o$.
Summarizing, all above we get
\begin{align*}
\<\map(\xi_\infty),w_\pm\>
&=\lim_{n\to\o}\<\xi_n,\beta_n^\pm(t_0)\>
=
\\
&=-\lim_{n\to\o} f^\pm_n(t_0)
=
\\
&=\mp f_\infty'(t_0)
=
\\
&=
\<\xi_\infty,\beta_\infty^\pm(t_0)\>.
\end{align*}
Therefore it remains to show that
\[\<\map(\xi_\infty),\map(\beta_\infty^\pm(t_0))\>
=\<\xi_\infty,\beta_\infty^\pm(t_0)\>.\]
Note that since $\map$ is non-contracting and norm-preserving, we have
\[
\begin{aligned}
\mangle\l({\map(\xi_\infty)},\map(\beta_\infty^\pm(t_0))\r)
&\ge
\mangle\l({\xi_\infty},{\beta_\infty^\pm(t_0)}\r),
\\
\mangle\l({\map(\beta_\infty^+(t_0))},{\map(\beta_\infty^-(t_0))}\r)
&\ge
\mangle\l({\beta_\infty^+(t_0)},{\beta_\infty^-(t_0)}\r).
\end{aligned}
\eqlbl{eq:ang-non-contr}
\]
Since ${\beta_\infty^+(t_0)}+{\beta_\infty^-(t_0)}=0$,
\[
\mangle({\xi_\infty},{\beta_\infty^+(t_0)})+\mangle({\xi_\infty},{\beta_\infty^-(t_0)})=\pi,
\ \ \ \
\mangle({\beta_\infty^+(t_0)},{\beta_\infty^-(t_0)})=\pi.\]
Therefore we have equalities in both inequalites of \ref{eq:ang-non-contr}.
Hence
\[ \<\map(\xi_\infty),\map(\beta_\infty^\pm(t_0))\>
=|\beta_\infty^\pm(t_0)|\cdot\cos\mangle({\xi_\infty},{\beta_\infty^\pm(t_0)})
=\<\xi_\infty,\beta_\infty^\pm(t_0)\>.
\]
\qedsf
\section{Invariant description of quasigeodesics}\label{sec:qg-inv.def}
Recall that a semiconcave subfunction $f\:\spc{L}\to\RR$
on a $\CBB{}{}$ space $\spc{L}$ is called \emph{native}
if at each point $p\in\Dom f$
there is a vector $w\in\T_p$
such that
\[d_pf(x)+\<w,x\>\le 0\]
for any $x\in\T_p$;
see Definition \ref{def:native}.
Note, that according to \ref{with-no-bry}, if $\partial \spc{L}=\emptyset$ then any semiconcave function is native.
\begin{thm}{Theorem}\label{thm:qg+concave}
Let
$\spc{L}\in\CBB m\kappa$
and $\gamma\:\II\to \spc{L}$ be a curve.
Then the following conditions are equivalent:
\begin{subthm}{qg+concave:qg} $\gamma$ is a $\kappa$-quasigeodesic;
\end{subthm}
\begin{subthm}{qg+concave:strong} for any $\lambda\in\RR$ and any native $\lambda$-concave locally Lipschitz subfunction $f\:\spc{L}\subto\RR$ the composition $f\circ\gamma$ is $\lambda$-concave.
\end{subthm}
\end{thm}
Before going ito proof, let us show that the word \emph{native} is necessury in the formulation of this theorem.
\parbf{Example.}
The unit disc $\DD$ in $\EE^2$ forms a $\CBB{2}{0}$ space.
Let $\gamma$ be an arc of boundary of $\DD$ equipped with unit-speed parametrization.
Note that $\gamma$ is a quasigeodesic in $\DD$.
On the other hand any linear function $f\:\EE^2\to\RR$ is also a concave function on $\DD$
and
it is easy to choose $f$ so that the composition $f\circ\gamma$ is not concave.
\medskip
The theorem implies that we can talk about quasigeodesics in $\CBB{}{}$-spaces without ambiguity; more presicely:
\begin{thm}{Corollary}\label{qg=k-qg}
Let $\Kappa>\kappa$
and $\spc{L}\in \CBB m\Kappa$.
Then the classes of $\Kappa$-\nospace quasigeodesics and $\kappa$-\nospace quasigeodesics in $\spc{L}$ coincide.
\end{thm}
\parit{Proof of \ref{thm:qg+concave},
(\ref{SHORT.qg+concave:qg}) $\Leftarrow$ (\ref{SHORT.qg+concave:strong}).}
First, let us define class of \emph{probation curves} which includes all curves satisfying condition (\ref{SHORT.qg+concave:strong}) for the functions with controlled concavity.
Thus, it will be sufficient to show that any probation curve $\gamma$ is a $\kappa$-quasigeodesic.
\begin{thm}{Definition}
A curve $\gamma$ in $\spc{L}\in\CBB m\kappa$ is called \emph{probation curve}\index{probation curve} if for any $\lambda\in \RR$ and any subfunction $f\:\spc{L}\subto\RR$ of controlled concavity type $(\lambda,\kappa)$, we have that $f\circ\gamma$ is $\lambda$-concave.
\end{thm}
First, let us briefly discuss properties of probation curves.
Note that for any $p,q\in \spc{L}$,
function $f_p=\md\kappa\circ\dist{p}{}{}$
has controlled concavity type $(1-\kappa\cdot f_p(q),\kappa)$ at $q$.
Thus, any probation curve is $\kappa$-convex.
Since lifting of functions with given controlled concavity type has the same controlled concavity type (see \ref{lem:lifting}),
we have that limit of probation curves is a probation curve.
More precisely:
\begin{clm}{}\label{clm:lim-prob}
Let
$\kappa_n\to\kappa$,
$\spc{L}_n\in\CBB m{\kappa_n}$,
$\spc{L}_n\xGHto{\GH} \spc{L}$
and $\spc{L}\in\CBB m{\kappa}$ (i.e. $\spc{L}_n$ is not a collapsing).
Assume $\gamma_n\:\II\to \spc{L}$ is a sequence of probation curves
and $\gamma_n(t)\xto\tau\gamma(t)$ for any $t\in\II$.
Then $\gamma$ is a probation curve.
\end{clm}
Now, let us continue the proof;
assume $\gamma\:\II\to\spc{L}$ is a probation curve.
Since $\gamma$ is $\kappa$-convex, it is $1$-Lipschitz (see \ref{thm:k-conc=lip}).
Therfore, according to \ref{lem:count-der}, it is enough to show that
\[\gamma^+(t_0)+\gamma^-(t_0)=0
\ \
\Rightarrow
\ \
|\gamma^\pm(t_0)|\ge1.
\eqlbl{eq:|gamma+|>=1}\]
for any $t_0\in\II$.
Without loss of generality, we can assume that $t_0=0$.
Set $p=\gamma(0)$.
Consider curves $\gamma_n(t)\df n*\gamma(t/n)$ in the blowup $n*\spc{L}$.
For the canonical convergence $n*\spc{L}\xGHto{\tau_p} \T_p$ defined in \ref{thm:approx4tan},
we have
\[\gamma_n(t)\xto{\tau_p} \gamma_\infty(t)=\pm t\cdot\gamma^\pm(0).\]
Since $\gamma^+(0)+\gamma^-(0)=0$ we can multiply $\gamma^\pm(0)$ by all real numbers --- thus the last expression has sence.
From Claim~\ref{clm:lim-prob},
we get that $\gamma_\infty$ is a probation curve in $\T_p$.
Take $f\:\T_p\to\RR$ as in Lemma~\ref{lem:exist-CCT}.
Then $f\circ\gamma_\infty(s)$ is $(-1)$-concave.
On the other hand $\gamma^\pm(0)\in\Lin_p$,
therefore
\begin{align*}
f\circ\gamma_\infty(t)
&=
f\l(t\cdot\gamma^+(0)\r)
=
\\
&=
-\tfrac{1}{2}{|\gamma^\pm(0)|^2}\cdot t^2+o(t^2).
\end{align*}
Thus, \ref{eq:|gamma+|>=1} follows.
\parit{(\ref{SHORT.qg+concave:qg}) $\Rightarrow$ (\ref{SHORT.qg+concave:strong}).}
We rewrite the proof given in \cite[6.1]{perelman-petrunin:qg},
it is based on the same idea as \ref{thm:cont=>lip} and \ref{thm:dist-to-bry}.
In the proof we will use so called \emph{Hamilton--Jacobi shifts}\index{Hamilton--Jacobi shifts} of $f$.
It is a function analog of equidistant for hypersurface.
It is named this way since the family of functions $f_s$ can be also regarded as a generalized solution for the Hamilton--Jacobi equations
$\tfrac{\partial f_s}{\partial s}+\tfrac{1}{2}\cdot|\nabla f_s|^2=0$.
\begin{clm}{Hamilton--Jacobi shifts.}
Let $\spc{L}$ be a metric space
and $f\:\spc{L}\subto\RR$ be a subfunction.
A Hamilton--Jacobi shift of $f$ for time $s>0$ is a subfunction $f_s\:\spc{L}\subto\RR$ defined as
\[f_s(y)
\df
\min_{x\in\Dom f} f(x)+\tfrac{1}{2\cdot s}\cdot\dist[2]{x}{y}{};\]
with $\Dom f_s$ to be the maximal open set such that the minimum is defined.
\end{clm}
Let us list its basic properties.
Note first that $f_{s_1+s_2}=(f_{s_1})_{s_2}$; i.e., using a more fancy language, $f\mapsto f_s$ is an \emph{action of semigroup} $(\RR_{\ge0},+)$.
Assume that $f$ is $\Lip$-Lipschitz.
Then for any $x\in\Dom f$, we have $f_s(x)$ is defined for all sufficiently small $s>0$ and moreover,
\[0\le f(x)-f_s(x)\le \tfrac{1}{2}\cdot\Lip^2\cdot s.\]
In particular, $f_s(x)\to f(x)$ as $s\to0+$.
By the definition, for any $y\in\Dom f_s$
there is \emph{foot point} $x\in\Dom f$ such that
\[f_s(y)
=f(x)+\tfrac{1}{2\cdot s}\cdot\dist[2]{x}{y}{};\]
i.e.,
the function $f+\tfrac{1}{2\cdot s}\cdot\dist[2]{y}{}{}$ has minimum at $x$.
Clearly
\[\dist{x}{y}{}\le \Lip\cdot s.
\eqlbl{eq:lamb-conc-4}\]
If we assume in addition that $\spc{L}\in\CBB{m}{}$,
then $f_s$ is defined as a minimum of semiconcave functions.
Thus, $f_s$ is semiconcave for all $s>0$.
If in addition
if $f$ is native,
then subfunction $f+\tfrac{1}{2\cdot s}\cdot\dist[2]{x}{}{}$ is native, see \ref{thm:native-operations}.
Thus, if $x$ is a foot point of $y\in\Dom f_s$
then, from the existence of supporting vector, we have
$\d_y f+\tfrac{1}{2\cdot s}\cdot\d_y\dist[2]{x}{}{}=0$.
It follows that the geodesic $[x y]$ is uniquely defined,
$\ddir x y\in \Lin_y$ and
$(\d_x f)(v)
=
\tfrac{1}{s}\cdot\<\ddir x y,v\>$ for any $v\in\T_x$.
\smallskip
Now, we ready for the proof.
First note that without loss of generality, we can assume that $f$ is $\Lip$-Lipschitz for some $\Lip\in\RR$;
otherwise restrict $f$ to a smaller domain.
It is sufficient to show that for any interior value $t_0 \in \II$, $s>0$ and all sufficiently small $\tau$, we have
\[f_s\circ\gamma(t_0+\tau)
\le
f_s\circ\gamma(t_0)
+ \Const\cdot\tau+\tfrac{1}{2}\cdot\l[\lambda-O(s)\r]\cdot\tau^2.
\eqlbl{eq:lamb-conc-1}\]
\begin{wrapfigure}{r}{35mm}
\begin{lpic}[t(-7mm),b(0mm),r(0mm),l(0mm)]{pics/foot-point(0.37)}
\lbl[l]{5,90;$\gamma$}
\lbl[rt]{11,27;$y$}
\lbl[rt]{5,54;$y_\tau$}
\lbl[t]{90,24;$x$}
\lbl[b]{68,56;$x_\tau$}
\lbl[lb]{67,86;$\xi_\tau$}
\lbl[lb]{17,34;{\small $\alpha$}}
\lbl[r]{74,30;{\tiny $\beta_\tau$}}
\end{lpic}
\end{wrapfigure}
Set $y=\gamma(t_0)$ and $y_\tau=\gamma(t_0+\tau)$.
Let $x$ be a foot point of $y$;
i.e. the function $f + \tfrac{1}{2\cdot s}\cdot\dist[2]{y}{}{}$ has a minimum at $x$
(we can assume $x\not=y$, otherwise \ref{eq:lamb-conc-1} follows since $f_s\le f$, $\d_x f\equiv0$ and $\dist[2]{y}{y_\tau}{}\le\tau$).
Set $\alpha=\mangle(\ddir y x,\gamma^+(0))$ and $\beta_\tau=\mangle\hinge x y {y_\tau}$.
Since $\T_p$ splits in the direction of $\ddir x y$,
there is direction $\xi_\tau\in\Sigma_x$ such that
\[\mangle(\xi_\tau,\dir x y)
=\mangle(\xi_\tau,\dir x {y_\tau})+\beta_\tau
=\pi-\alpha.\]
Define $x_\tau=\gexp\mc0_x(\tau\cdot\xi_\tau)$.
First note that
\[\dist[2]{x_\tau}{y_\tau}{}
\le \dist[2]{x}{y}{} +[1+O(s^2)]\cdot\tau^2.
\eqlbl{eq:lamb-conc-7}\]
Indeed, for any $p\in \spc{L}$, the function $\tfrac{1}{2}\cdot\dist[2]{p}{}{}$ is $\l[1+O(r^2)\r]$-concave in $\oBall(p,r)$.
Thus, from \ref{eq:lamb-conc-4} and \ref{thm:prop-gexp:func}, for all small $\tau$, we have
\[\begin{aligned}
\dist[2]{x_\tau}{y_\tau}{}
&\le \dist[2]{x}{y_\tau}{}+2\cdot\tau\cdot\dist[{{}}]{x}{y_\tau}{}\cdot\cos(\alpha+\beta_\tau)+\l[1+O(s^2)\r]\cdot\tau^2,
\\
\dist[2]{x}{y_\tau}{}
&\le \dist[2]{x}{y}{}-2\cdot\tau\cdot\dist[{{}}]{x}{y}{}\cdot\cos\alpha+\l[1+O(s^2)\r]\cdot\tau^2
\end{aligned}
\eqlbl{eq:lamb-conc-5}\]
Note also that $\dist{x}{y_\tau}{}
=\dist{x}{y}{}-\tau\cdot\cos\alpha+o(\tau)$
and $\dist{y}{y_\tau}{}=\tau+o(\tau)$;
therefore
\[\beta_\tau
>
\frac{\tau\cdot\sin\alpha}{\sn\kappa\dist[{{}}]{x}{y}{}}+o(t).
\eqlbl{eq:lamb-conc-6}\]
From \ref{eq:lamb-conc-5} and \ref{eq:lamb-conc-6}, we get
\ref{eq:lamb-conc-7}.
Further, from \ref{thm:prop-gexp:func},
\[\begin{aligned}
f(x_\tau)
&\le
f(x)+(\d_x f)(\xi_\tau)\cdot \tau+\tfrac\lambda2\cdot\tau^2
=
\\
&=
f(x)-\tfrac{\dist{x}{y}{}}{s}\cdot(\cos\alpha)\cdot\tau +\tfrac\lambda2\cdot\tau^2.
\end{aligned}
\eqlbl{eq:lamb-conc-3}\]
Since,
\[f_s(y_\tau)
\le
f(x_\tau)+\tfrac{1}{2\cdot s}\cdot\dist[2]{x_\tau}{y_\tau}{},\]
\ref{eq:lamb-conc-4},
\ref{eq:lamb-conc-7}
and \ref{eq:lamb-conc-3}
imply \ref{eq:lamb-conc-1}.\qeds
\section{Pre-quasigeodesics}
\label{sec:pqg}
Pre-quasigeodesic is an intermediate class of curves --- it only used to construct quasigeodesics.
It was introduced by Perelman,
he first proved existence of pre-quasigeodesics
and only few year later existence of quasigeodesics.
The main result of this section is existence of pre-quasigeodesics --- theorem \ref{exist-pre-qg}.
We also prove a number of properties of pre-quasigeodesics which will be needed the construction of quasigeodesics in the next section.
\begin{thm}{Definition}\label{def:pqg}
Let $\spc{L}\in\CBB m \kappa$.
A $\kappa$-convex curve $\gamma\:\II \to \spc{L}$ is called a \emph{pre-quasigeodesic}\index{pre-quasigeodesic} if for
any $a\in \II$ such that ${|\gamma^+(a)|}>0$, the curve $\gamma^a$ defined by
\[\gamma^a(t)
\df
\gamma\left(a+\tfrac{t}{|\gamma^+(a)|}\right)\]
is $\kappa$-convex for $t\ge0$, and if ${|\gamma^+(a)|}=0$ then $\gamma(t)=\gamma(a)$ for
all $t\ge a$.
\end{thm}
Formally speaking, this definition of depends on $\kappa$,
but, in this and the next section we fix some $\kappa\le 0$ such that $\spc{L}\in\CBB{}\kappa$, thus it will be no ambiguity.
\begin{thm}{Existence of pre-quasigeodesics}\label{exist-pre-qg}
Let $\kappa\le 0$,
$\spc{L}\in\CBB m \kappa$,
$x\in \spc{L}$,
$v\in \T_x$ and $|v|\le 1$.
Then there is a pre-quasigeodesic $\gamma\:[0,\infty)\to \spc{L}$ such that
$\gamma^+(0)=v$.
\end{thm}
Pre-quasigeodesics will be constructed in two steps.
First we construct $\kappa$-convex curves out of radial curves, which are \emph{$\kappa$-monotonic} in the sense of the following definition.
Second we construct pre-quasigeodesics out of $\kappa$-convex.
\begin{thm}{Definition}\label{def:mono}
Let $\spc{L}\in\CBB m\kappa$.
A $1$-Lipschitz curve $\alpha\:\II\to \spc{L}$ is called \emph{$\kappa$-monotonic}\index{$\kappa$-monotonic curve} with
respect to $t_0\in\II$ if for any $p\in \spc{L}$ the function $t\mapsto\tangle\mc\kappa(\alpha|_{t_0}^t,p)$
is non-increasing for $t>t_0$ in the domain of definition.
\end{thm}
Here is a construction which makes possible to join $\kappa$-monotonic curves as well as $\kappa$-convex curves.
\begin{thm}{Extention procedure I}\label{ext-mono}
Let $\kappa\le 0$,
$\spc{L}\in\CBB m \kappa$
and
$\alpha_1\:[a,\infty)\to \spc{L}$, $\alpha_2\:[b,\infty)\to \spc{L}$ be two
$\kappa$-monotonic curves with respect to $a$ and $b$ respectively.
Assume
\[a\le b,\ \ \alpha_1(b)=\alpha_2(b)\ \ \text{and}\ \
\alpha^+_1(b)=\alpha^+_2(b).\] Then its joint
\[\beta\:[a,\infty)\to \spc{L},\ \ \beta(t)=\l[
\begin{matrix}
\alpha_1(t)&\text{if}&t< b\\
\alpha_2(t)&\text{if}&t\ge b
\end{matrix}\right.\]
is $\kappa$-monotonic with respect to $a$ and $b$.
Moreover, if in addition, $\alpha_1$ and $\alpha_2$ are $\kappa$-convex curves then so is $\beta$.
\end{thm}
\parit{Proof.}
It is enough to show that for any $p\in \spc{L}$,
\[\t{the function}\ \ t\mapsto\tangle\mc\kappa(\beta|^t_a,p)\ \ \t{is non-increasing for}\ \ t\ge b.\eqlbl{eq:ext-mono-1}\]
\begin{wrapfigure}[9]{l}{46mm}
\begin{lpic}[t(3mm),b(0mm),r(0mm),l(0mm)]{pics/mono-alex(0.35)}
\lbl[lt]{98,2;$p$}
\lbl[rb]{26,35;$q$}
\lbl[tl]{-1,1;$\alpha_1(a)$}
\lbl[b]{69,47;$\alpha_2(t_1)$}
\lbl[bl]{105,27;$\alpha_2(t_2)$}
\end{lpic}
\end{wrapfigure}
Set $q=\beta(b)=\alpha_1(b)=\alpha_2(b)$.
Applying Alexandrov's lemma twice,
the statement \ref{eq:ext-mono-1} can be reduced to the following two inequalities for $b<t_1<t_2$:
\[\tangle\mc\kappa(\alpha_2|_{t_1}^b,p)
+
\tangle\mc\kappa(\alpha_2|_{t_1}^{t_2},p)
\le\pi,\eqlbl{eq:ext-mono-2}
\]
\[
\tangle\mc\kappa(\alpha_1|_b^a,p)
+
\tangle\mc\kappa(\alpha_2|_b^{t_1},p)
\le\pi. \eqlbl{eq:ext-mono-3}\]
Inequality \ref{eq:ext-mono-2} follows directly from $\kappa$-monotonicity of $\alpha_2$ ---
again Alexandrov's lemma.
To prove \ref{eq:ext-mono-3}, set
$\phi=\sup\set{\tangle\mc\kappa(\alpha_2|_b^t,p)}{t>b}$.
Since $\alpha_2$ is $\kappa$-monotonic w.r.t. $b$,
we have $\cos\phi=-(\d_q\dist{p}{}{})(v)$,
where $v=\alpha_1^+(b)=\alpha_2^+(b)$.
In particular,
\[\phi=\lim_{t\to b+}\tangle\mc\kappa(\alpha_1|^t_b,p).\]
Yet applying Alexandrov's lemma,
from $\kappa$-monotonicity of $\alpha_1$ w.r.t. $a$, we get
\[\tangle\mc\kappa(\alpha_1|^a_b,p)+\phi\le \pi\]
and \ref{eq:ext-mono-3} follows.
The last part follows from \ref{k-convex-mono}.\qeds
\begin{thm}{Lemma}\label{lem:mono-lim}
Let $\spc{L}\in\CBB m\kappa$.
Assume $\alpha_n\:[0,a]\to \spc{L}$ be a sequence of $\kappa$-monotonic curves w.r.t. $0$
and
$\alpha_n(t)\to\alpha(t)$ for each $t\in [0,a]$.
Then $\alpha$ is $\kappa$-monotonic.
Moreover, if for some $x\in \spc{L}$ we have $\alpha_n(0)=x$ and $|\alpha^+(0)|=1$ then $\alpha_n^+(0)\to\alpha^+(0)$.
\end{thm}
\parit{Proof of \ref{lem:mono-lim}.}
The first part follows directly from Definition~\ref{def:mono}.
Note that for any $p$,
\[(\dist{p}{}{}\circ\alpha)^+(0)=-\cos\l(\lim_{t\to0+}\tangle\mc\kappa(\alpha|_0^t,p)\r).\]
From monotonicity, the limit is defined.
Hence $(\dist{p}{}{}\circ\alpha)^+(0)$ and, from \ref{lem:count-der:rl}, also $\alpha^+(0)$ are defined.
Set $\xi_n=\alpha^+(0)$.
Passing to a subsequence if nesesurily, we can assume that $\xi_n\to\xi\in\Sigma_x$.
For any geodesic $[x p]$, we have
\[\limsup_{t\to t_0+}\tangle\mc\kappa(\alpha_n|_0^t,p)
\le
\mangle(\xi_n,\dir x p).\]
Since, $\alpha_n$ is $\kappa$-monotonic, we have that
$\tangle\mc\kappa(\alpha_n|_0^t,p)\le \mangle(\xi_n,\dir x p)$
and hence $\tangle\mc\kappa(\alpha|_0^t,p)\le \mangle(\xi,\dir x p)$,
for any $t>0$.
In other words,
\[\<\alpha^+(0),\dir x p\>\ge \cos\mangle(\xi,\dir x p).\eqlbl{lem:mono-lim*}\]
Note that $|\alpha^+(0)|\le 1$ --- monotonic curves are by definition $1$-Lipschitz.
Thus, applying \ref{lem:mono-lim*} for $\dir x p\approx \xi$,
we get $\alpha^+(0)=\xi$.
\qeds
\begin{thm}{Existence of convex curve}\label{exist-convex}
Let $\kappa\le 0$,
$\spc{L}\in\CBB m \kappa$,
$x\in \spc{L}$
and $v\in \T_x$ be such that $|v|\le 1$.
Then there is a $\kappa$-convex curve $\beta_v\:[0,\infty)\to \spc{L}$ with
$\beta_v^+(0)=v$.
\end{thm}
\parit{Proof.}
For $z\in \spc{L}$ and $w\in \T_z$ such that $|w|\le 1$,
consider the curve $\alpha_w\:[0,\infty)\to \spc{L}$ defined as
\[\alpha_w(t)=\gexp\mc\kappa_z t\cdot w.\]
Directly from the construction of gradient exponential map (section~\ref{sec:gexp}),
we have $\alpha_w^+(t)$ is defined for all $t\ge 0$ and
$\alpha_w$ is $1$-Lipschitz.
According to Theorem~\ref{gexp-mono}, $\alpha_w$ is $\kappa$-monotonic.
Fix $\eps>0$.
Given $\xi\in\Sigma_x$, consider the following recursively
defined sequence of curves $\alpha_{v_n}(t)$ such that $v_0=\xi$ and
$v_{n}=\alpha^+_{v_{n-1}}(\eps)$.
Then joint all $\alpha_{v_n}|[0,\eps]$ into a new curve
\[\beta_{\xi,\eps}(t)=\alpha_{v_n}(t-n\cdot\eps),\ \ \t{where}\ \ n={\lfloor t/\eps\rfloor}.\]
Applying extension procedure I (\ref{ext-mono}),
we get that $\beta_{\xi,\eps}\:[0,\infty)\to \spc{L}$ is $\kappa$-\nospace monotonic with respect to every parameter value of the form $n\eps$, $n\in\ZZ_{\ge0}$.
Passing to a partial limit, $\beta_{\xi,\eps}\to\beta_{\xi}$ as $\eps\to 0$ we get a curve $\beta_{\xi}$ which is $\kappa$-monotonic w.r.t. any value of parameter.
Thus, according to \ref{k-convex-mono}, $\beta_{\xi}$ is $\kappa$-convex and from \ref {lem:mono-lim}, $\beta_{\xi}^+(0)=\xi$.
Finally, for $v=r\cdot\xi$, set
$\beta_v(t)=\beta_\xi(r\cdot t)$.
If $|v|\le 1$, the curve $\beta_v$ is $\kappa$-convex;
that follows directly from definition \ref{def:k-convex.curve} since $\kappa\le 0$.\qeds
\parit{Proof of \ref{exist-pre-qg}.}
For each point $z\in \spc{L}$ and $w\in \T_z$ such that $|w|\le 1$, choose a $\kappa$-convex
curve $\beta_w\:[0,\infty)\to \spc{L}$ with
$\beta_w^+(0)=w$;
it exists due to \ref{exist-convex}.
Let us construct a $\kappa$-convex curve
$\gamma_\eps \: [0,\infty)\rightarrow \spc{L}$
with $\gamma^+_\eps(0)=v$,
such that there is a representation of $[0,\infty)$ as a countable union of disjoint
half-open intervals $[a_i,b_i)$,
such that $|a_i-b_i|\le \eps$ and for
any $t\in [a_i,b_i)$ we have
\[|\gamma_\eps^+(a_i)|\ge |\gamma_\eps^+(t)| \ge
(1-\eps)|\gamma_\eps^+(a_i)|;\eqlbl{eq:exist-pre-qg-1}\]
moreover, for each $i$, the curve
\[\gamma_\eps^{a_i}(t)
=
\gamma_\eps\left(a_i+ \tfrac{t}{|\gamma_\eps^+(a_i)|}\right)\]
is also $\kappa$-convex for $t\ge 0$.
\parit{Construction of $\gamma_\eps$.}\label{transfinite-extension-page}
Assume we already can construct $\gamma_\eps$ in the interval $[0,a)$, and cannot extend it any further.
Since $\gamma_\eps$ is $1$-Lipschitz, we can extend it continuously to
$[0,a]$.
Use \ref{cor:polar} to
construct a vector $w$ polar to $\gamma^-_\eps(a)$ with $|w|\le