-
Notifications
You must be signed in to change notification settings - Fork 1
/
gmt.tex
824 lines (670 loc) · 26.5 KB
/
gmt.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
%%!TEX root = all.tex
%%array^
%arXiv
\chapter{Measure theory}\label{chap:measure-theorey}
\section{Carath\'eodory's construction}\label{sec:mes+balls}
Let $\spc{X}$ be a metric space.
A function $\mu$ with values in $[0,\infty]$,
defined on all subsets of $\spc{X}$
is called \index{outer measure}\emph{outer measure} if
\begin{itemize}
\item $\mu\,\emptyset=0$;
\item If $A\subset B\subset \spc{X}$, then $\mu\, A\le \mu\, B$;
\item For any sequence $A_1, A_2,\dots$ of subsets of $\spc{X}$ we have
$$\mu\left(\bigcup_n A_n\right) \le \sum_n \mu\, A_n.$$
\end{itemize}
A subset $E\subset \spc{X}$ is called \index{$\mu$-measurable}\emph{$\mu$-measurable} if
$$\mu\, A = \mu(A \cap E) + \mu(A \setminus E)$$
for every subset $A\subset\spc{X}$.
Recall that given two subsets $A$ and $B$ of a metric space $\spc{X}$,
we define
$$\dist{A}{B}{\spc{X}}\df \inf\set{\dist{a}{b}{\spc{X}}}{a\in A\ \text{and}\ b\in B}.$$
The following is a classical lemma in measure theory,
see \cite[2.1.3 and 2.3.2(9)]{federer}.
\begin{thm}{Carath\'eodory's lemma}\label{lem:caratheodory}
Let $\mu$ be an outer measure on a metric space $\spc{X}$.
Then the $\mu$-measurable sets form a sigma-algebra.
Moreover, if
\[\mu(A\cup B)=\mu\, A+\mu\, B
\eqlbl{eq:caratheodory}\]
for any two sets $A$ and $B$
such that $\dist{A}{B}{}>0$, then any Borel set in $\spc{X}$ is $\mu$-measurable.
\end{thm}
\parbf{Carath\'eodory's construction.}\index{Carath\'eodory's construction}
Fix a function $\rho$, that returns a value in $[0,\infty]$
for any closed subset of $\spc{X}$.
Define outer measure $\Carath_\rho$ of set $W$ in $\spc{X}$ in the following way
$$\Carath_\rho W
\df
\lim_{\eps\to0}
\,
\inf
\set{\sum_{n\in\NN}\rho A_n}
{\begin{aligned}
&\bigcup_{n\in\NN}A_n\supset W, \text{all}\
A_n
\ \text{are closed,}\
\\
&
\text{and}\ \diam A_n<\eps\ \text{for each}\ n.
\end{aligned}
}.$$
Note that
the value of the infimum above is nondecreasing in $\eps$;
in particular the limit is defined.
An outer measure $\mu$ on $\spc{X}$ is called \index{Borel regular measure}\emph{Borel regular} if any Borel set in $\spc{X}$ is $\mu$-measurable and for any set $A\subset \spc{X}$ there is a Borel set $B$ such that $A\subset B$ and $\mu\, A=\mu\, B$.
From Carath\'eodory's lemma (\ref{lem:caratheodory}), we get the following.
\begin{thm}{Corollary}
The Carath\'eodory's construction always produce a Borel regular outer measure.
\end{thm}
Let us apply the Carath\'eodory's construction for different choices of the function $\rho$.
\begin{thm}{Definitions}
Assume that $A$ is a closed subset of a metric space $\spc{X}$.
Fix a real value $\alpha\ge 0$ and an integer value $\kay\ge0$.
\begin{subthm}{def:HausMes}
If we take $\rho A=(\diam A)^\alpha$,
then the measure $\Carath_\rho$ is called the \index{Hausdorff measure}\emph{$\alpha$-dimensional Hausdorff measure} and denoted as $\HausMes_\alpha$.
\end{subthm}
\begin{subthm}{def:SphMes}
If $\rho A=(\rad A)^\alpha$, the measure $\Carath_\rho$ is called the \index{spherical measure}\emph{$\alpha$-dimensional spherical measure} and denoted as
$\SphMes_\alpha$.
\end{subthm}
%\item Let us denote by $\overline\vol_\kay$ the Lebesgue outer measure on $\RR^\kay$.
%Consider the function
%$$\rho A
%=
%\sup
%\set{\overline\vol_\kay f(A)}{f\:A\to\RR^\kay\ \text{and}\ \lip f\le 1}.$$
%The measure $\Carath_\rho$ is called $\kay$-dimensional \index{short measure}\emph{short measure} and it will be denoted as $\ShortMes$.
\begin{subthm}{def:LongMes}
Assume $\rho A$ is the least lower bound for the Lebesgue measure of a compact set $K$ in $\EE^\kay$
such that $f(K)\supset A$ for some short map $f\:K\to \spc{X}$
(if no such $K$ exists,
we set $\rho A=\infty$).
For this choice of $\rho$,
the measure $\Carath_\rho$ will be called $\kay$-dimensional
\emph{long measure}\index{long measure}
and it will be denoted as $\LongMes_\kay$.
\end{subthm}
If we need to emphasize that the measure is defined on the space $\spc{X}$, we use $\spc{X}$ as the index.
For example, we may write $\HausMes_\alpha(A)_\spc{X}$ for the $\alpha$-dimensional Hausdorff measure of set $A$ in $\spc{X}$.
\end{thm}
The following proposition follows since
\[2\cdot\rad A
\ge
\diam A
\ge
\rad A\]
holds for any set $A$ in a metric space.
\begin{thm}{Proposition}
Let $\spc{X}$ be a metric space and the subset $A\subset \spc{X}$ is arbitrary subset
then
\begin{subthm}{}
For any $\alpha\ge 0$, we have
\[2^\alpha\cdot\SphMes_\alpha A\ge\HausMes_\alpha A\ge \SphMes_\alpha A.\]
\end{subthm}
\begin{subthm}{}
For any integer $m\ge 0$ we
have
\[\LongMes_m A\ge \tfrac{\alpha_m}{2^m}\cdot\HausMes_m A.\]
where $\alpha_m$ is the Lebesgue measure of the unit ball in $\EE^m$.
\end{subthm}
\end{thm}
The following proposition trivially follows from the definitions
\begin{thm}{Proposition}\label{prop:bilip-measure}
Let $\spc{X}$ and $\spc{Y}$ be metric spaces, $A\subset \spc{X}$
and
$f\: \spc{X}\to \spc{Y}$ be a $\Lip$-Lipschitz map.
Then
\[\HausMes_\alpha f(A)\le \Lip^\alpha\cdot\HausMes_\alpha A,\]
\[\LongMes_\kay f(A)\le \Lip^\alpha \cdot\LongMes_\kay A\]
and
\[\SphMes_\alpha f(A)\le \Lip^\alpha\cdot \SphMes_\alpha A.\]
If the map $f$ is $\Lip^{\mp1}$-bi-Lipschitz
then we have in addition
\[\HausMes_\alpha f(A)\ge \Lip^{-\alpha}\cdot\HausMes_\alpha A,\]
\[\LongMes_\kay f(A)\ge \Lip^{-\alpha} \cdot\LongMes_\kay A\]
and
\[\SphMes_\alpha f(A)\le (2\cdot \Lip)^{-\alpha}\cdot \SphMes_\alpha A.\]
\end{thm}
\section{Measurable functions}
\begin{thm}{Definition}\label{def:meas-funct}
Let $\spc{X}$ be a metric space equipped with Borel regular measure $\mu$.
A function $f\:\spc{X}\to\RR$ is called measurable if $f^{-1}(C)$ is $\mu$-measurable for any Borel subset $C\subset \RR$.
\end{thm}
%???REF???
\begin{thm}{Lusin's theorem}\label{thm:lusin}
Let $\spc{X}$ be a metric space equipped with Borel regular measure $\mu$.
Assume $\spc{X}$ can be covered by countable number of open sets with finite $\mu$-measure.
Then for any $\mu$-measurable function $f\:\spc{X}\to\RR$ and $\eps>0$
there is a continuous function $g\:\spc{X}\to\RR$
such that
\[\mu\set{x\in \spc{X}}{f(x)\ne g(x)}<\eps.\]
\end{thm}
\section{Volume}
The following classical result follows directly from \cite[2.7.7]{federer}.
%???MORE-REF???
\begin{thm}{Lebesgue's theorem}\label{thm:lebesgue}
There is a unique Borel regular measure on $\EE^m$
that is invariant with respect to translations
and such that the measure of unit cube $[0,1]^n$ is $1$.
\end{thm}
The measure on $\EE^m$ described in the Lebesgue's theorem is called \index{Euclidean volume}\emph{Euclidean volume};
it will be denoted by $\vol_m$.
Recall that $\alpha_m$ denotes the volume of a unit ball in $\EE^m$.
Let us define volume in general metric space.
\begin{thm}{Definition}\label{def:vol}
Assume $A$ is a Borel subset of metric space and $m$ is a nonnegative integer.
The $m$-dimensional volume of $A$ is defined as
\[\vol_mA=\tfrac{\alpha_m}{2^m}\cdot\HausMes_m\]
\end{thm}
The constant $\tfrac{\alpha_m}{2^m}$ is needed to make this definition agree with the
the definition of volume on the Euclidean spaces.
\section{Doubling spaces and measures}\label{sec:doubling-spaces}
\begin{thm}{Definition}\label{def:doubling-space}
A metric space $\spc{X}$ is called
\index{doubling space}\emph{doubling}
if there is $r_0>0$
and a positive integer $N$
such that
$$\pack_{\frac r2} B<N$$
for any ball $B$ of radius $r\le r_0$ in $\spc{X}$.
\end{thm}
\begin{thm}{Proposition}\label{prop:2ble=>loc.compact}
Any complete doubling metric space is locally compact.
\end{thm}
\parit{Proof.} Let $\spc{X}$ be a complete doubling metric space
and the values $r_0$ and $N$ are as in Definition~\ref{def:doubling-space}.
Fix a ball $B$ with radius $r\le r_0$ in $\spc{X}$.
Applying the definition of doubling space recursively,
we get that for any positive integer $n$
the ball $B$ can be covered by $N^n$ balls of radius $\tfrac{r}{2^n}$.
In particular, $B$ is uniformly bounded
and therefore compact.
\qeds
\begin{thm}{Proposition}\label{prop:2ble=>global}
Let $\spc{X}$ be a complete length space.
Assume $\spc{X}$ and $r_0$ and $N$ are as in the definition \ref{def:doubling-space}.
Then
\[
\pack_{r}(\cBall[x,n\cdot r])\le N^{n-1}\]
for any $n$ and $r\le \frac{r_0}2$.
\end{thm}
%%%???do we need it???
\parit{Proof.}
Let us apply induction on $n$; the base $n=2$ follows from Definition \ref{def:doubling-space}.
By the induction hypothesis, that the ball $\cBall[x,n\cdot r]$ can be covered by $N^{n-1}$ balls of radius $r$.
Therefore the ball $\cBall[x,(n+1)\cdot r]$ can be covered by $N^{n-1}$ balls of radius $2\cdot r$.
From doubling; each ball of radius $2\cdot r$ can be covered by $N$ balls of radius $r$ --- hence the statement.
\qeds
\section{Doubling measures}\label{sec:doubling-mes}
Given a closed ball $B=\cBall[x,R]$,
and a positive real number $\lam$,
let us denote by $\lam \cdot B$ the ball $\cBall[x,\lam\cdot R]$.
(When we speak of a ball $B$,
it has to be understood that it comes with a fixed center and radius,
even if these are not uniquely determined by $B$ as a set.)
\begin{thm}{Definition}\label{def:doubling-measure}
Let $\spc{X}$ be a metric space.
A Borel regular measure $\mu$ on $\spc{X}$ is called
\index{doubling measure}\emph{doubling}
if
(1) $\mu\,\Omega>0$ for any open set $\Omega$
and
(2) there are real numbers $r_0>0$ and $\Const$ such that
\[\mu (2\cdot B)
<
\Const\cdot \mu\, B\]
for any ball $B$ in $\spc{X}$ with radius at most $r_0$.
\end{thm}
Note that since the inequality is strict, the definition implies that $2\cdot B$ has finite measure.
\begin{thm}{Proposition}\label{prop:doubling-measure=>space}
Let $\spc{X}$ be a metric space with a doubling measure $\mu$.
Then $\spc{X}$ is doubling.
In particular, by Proposition~\ref{prop:2ble=>loc.compact},
it is locally compact.
\end{thm}
\parit{Proof.}
Assume that the values $r_0$ and $\Const$ are as in the Definition~\ref{def:doubling-measure}.
Fix a ball $B=\cBall[p,r]$ with the radius $r<\tfrac {r_0}2$.
Assume the points $x_1,x_2,\dots,x_n\in B$ are
such that $\dist{x_i}{x_j}{}>\tfrac r2$ for any $i\ne j$.
In other words the balls $B_i=\cBall[x_i,\tfrac r4]$ are mutually disjoint.
Note that $8\cdot B_i\supset B$
for any $i$.
Since $\mu$ is doubling, we get
\[\mu\, B_i>\tfrac1{\Const^3}\cdot \mu\, B\eqlbl{eq:4-ling}\]
On the other hand
$B_i\subset 2\cdot B$ for each $i$.
Therefore
\begin{align*}
\sum_{i=1}^n\mu\, B_i
&\le
\mu(2\cdot B)
<
\\
&<\Const\cdot \mu\, B.
\end{align*}
Together with \ref{eq:4-ling},
the later implies
\[n< \Const^4\]
--- hence the result.
\qeds
\begin{thm}{Proposition}\label{prop:bounded=>finite-measure}
Let $\spc{X}$ be a complete length space with doubling measure $\mu$.
Then any bounded set in $\spc{X}$ has finite $\mu$-measure.
\end{thm}
\parit{Proof.}
Let $A$ be a bounded set in $\spc{X}$;
we need to show that $\mu\, A<\infty$.
Without loss of generality we may assume that $A$ is closed;
otherwise pass to the closure of $A$.
By Proposition~\ref{prop:2ble=>loc.compact},
$\spc{X}$ is locally compact.
Since $\spc{X}$ is a complete length space,
by Hopf--Rinow theorem (\ref{thm:Hopf-Rinow}),
it has to be proper.
In particular, $A$ has to be compact.
From the definition of doubling measure, there is a positive real value $r_0$ such that
any ball of radius $r_0$ in $\spc{X}$ has finite measure
(see the remark after the Definition~\ref{def:doubling-measure}).
Since $A$ is compact it can be covered by a finite number of such balls.
Hence the result follows.
\qeds
\begin{thm}{Proposition}\label{prop:doubling&balls-comparison}
Let $\spc{X}$ be a complete length space with doubling measure $\mu$
then the ratio
$$\frac{\mu (\cBall[a,r_a])}{\mu (\cBall[b,r_b])}$$
can be bounded in terms of $\dist{a}{b}{\spc{X}}$, $r_a$ and $r_b$.
\end{thm}
\parit{Proof.}
Let $r_0$ and $\Const$ be as in the definition of doubling measure (\ref{def:doubling-measure}).
Note that if $B$ is a ball of radius at most $r_0$, then
\[1
\le
\frac{\mu\, B}{\mu \left(\tfrac1{2^\kay}\cdot B\right)}
\le c^\kay.\]
By Proposition~\ref{prop:2ble=>global}, therefore, it is sufficient to prove the statement in the case $r_a=r_b\z=r_0$.
Set $A=\cBall[a,r_0]$
and $B=\cBall[b,r_0]$.
Note that if $\dist{a}{b}{}<r_0$
then $A\subset 2\cdot B$;
in particular, $\mu\, A\le \mu (2\cdot B)$.
Since $\mu$ is doubling, we get
\[\frac{\mu\, A}{\mu\, B}<c.
\eqlbl{eq:muA/muB-1}
\]
Since $\spc{X}$ is a length space,
any two points $x$ and $y$ in $\spc{X}$
can be joint by a chain
$x=x_0,x_1,\dots x_n=y$
such that
$\dist{x_{i-1}}{x_i}{}
<
r_0$
for all $i$.
Applying the inequality \ref{eq:muA/muB-1} few times, we get that if $r_a=r_b=r_0$, then
\[\frac{\mu\, A}{\mu\, B}<c^N,
\eqlbl{eq:muA/muB-2}
\]
where $N=\lceil\frac{\dist{x}{y}{}}{r_0}\rceil$.
\qeds
\section{Covering theorems}
Let $A\subset \spc{X}$.
A family of closed balls $\mathfrak{B}$ in $\spc{X}$ is called
\index{Vitali covering}\emph{Vitali covering}%
\footnote{Our definition of Vitali covering is among the most restrictive ones. More general definitions are given in the Federer's book \cite{federer}.}
of $A$ if for every $a\in A$ and $\eps > 0$,
there is a ball from $\mathfrak{B}$
centered at $a$ and
radius $R<\eps$.
In this section will discuss two closely related covering theorems.
\begin{thm}{Vitali covering theorem}\label{thm:vitali}
Let
$\mu$ be a doubling measure on a metric space $\spc{X}$
and let
$\mathfrak{B}$ be a Vitali covering
of a set $A\subset \spc{X}$.
Assume $\mu\, A<\infty$,
then there is a countable collection of disjoint balls
$\{B_n\}_{n\in\IndexSet}\subset\mathfrak{B}$ such that
$$\mu\left(A\setminus\bigcup_{n\in\IndexSet}B_n\right)=0.$$
\end{thm}
For the proof see for example \cite[Theorem 1.6]{heinonen};
in a more general form it appears in \cite[Section 2.8]{federer}
Next covering theorem makes a stronger condition on metric space
but relax the condition on the measure.
To formulate this theorem we need
the notion of {}\emph{directionally limited metric spaces}.
This class of spaces was introduced in \cite[2.8.9]{federer};
essentially these are the spaces where proof of Besicovitch covering theorem
works.
We state the definition is a slightly less general form, but it will be sufficient for our needs;
compare \cite[page 7]{heinonen}).
\begin{thm}{Definition}\label{def:directionally-limited}
A metric space $\spc{X}$
is called \index{directionally limited space}\emph{directionally limited}
if there is $\eps>0$ and a positive integer $M$
such that for any point $p\in \spc{X}$
there are at most $M$ distinct points $a_1,\dots a_n$
such that if for some $i\ne j$ we have a point $x\in [pa_i]$ such that $|p-x|=|p-a_j|$
then $|x-a_j|\ge\tfrac14\cdot|p-a_j|$.
\end{thm}
%??? the def seems to be right, but not very natural --- any space without geodesics is not directionally limited.
\begin{thm}{Besicovitch covering theorem}
Let $\spc{X}$ be a directionally limited metric space
and $\mu$ be a Borel regular measure on $\spc{X}$.
Assume $A$ is a subset in $\spc{X}$ such that $\mu\, A<\infty$
and let $\mathfrak{B}$ be a Vitali covering of $A$.
Then there is at most countable collection of disjointed balls
$\{B_n\}_{n\in\IndexSet}\subset\mathfrak{B}$ such that
$$\mu\left(A\setminus\bigcup_{n\in\IndexSet}B_n\right)=0.$$
\end{thm}
\section{Coarea formulas}\label{sec:coarea-prelim}
In order to formulate the coarea formula,
first we need to define Jacobians.
\parbf{Linear algebra.}
Let $V$ be a finite dimensional real vector space, equipped with inner product $\<{*},{*}\>$.
Consider the norm on $V$ is defined as $|v|\df\sqrt{\<v,v\>}$.
We denote by \index{$V^{\wedge n}$}$V^{\wedge n}$ the $n$-th \index{exterior power}\emph{exterior power} of $V$;
that is,
\[V^{\wedge n}=\underbrace{V\wedge V\wedge\dots\wedge V}_{\mbox{$n$ times}}.\]
Note that the inner product
$\<{*},{*}\>$
on $V$
leads to canonical inner product on $V^{\wedge n}$.
This is the (necessary unique) inner product such that
\[\left\< v^1\wedge\cdots\wedge v^n, v^1\wedge\cdots\wedge v^n\right\>
=
1\]
for any orthonormal system of vectors $v^1,\cdots,v^n$ in $V$.
Assume $W$ is another finite dimensional real vector space, equipped with inner product.
Let $L\:V\to W$ be a linear operator.
Then one can consider \index{operator norm}\emph{operator norm} of $L$ defined as
\[|L|\df\inf\set{c\ge 0}{|L(v)|\le c\cdot|v|\ \text{for any}\ v\in V}.\]
In other words,
\[|L|=\lip L,\]
where, $\lip L$ denotes the best Lipschitz constant of $L$.
The $n$-th exterior power of a linear map $L\:V\to W$
is defined as the (necessary unique)
linear map $L^{\wedge n}\:V^{\wedge n}\to W^{\wedge n}$
such that the following identity
\[
L^{\wedge n}(v^1\wedge v^2\wedge\dots\wedge v^n)
=
L(v^1)\wedge L(v^2)\wedge\dots\wedge L(v^n)
\]
holds for any $v^1,v^2,\dots, v^n\in V$.
Note that
\[|L^{\wedge n}|
=
\sup_A
\left\{
\vol_n [L(A)]
\right\}
\]
where $A$ runs along all $n$-dimesional parallelepipeds in $V$
with unit $n$-volume.
\parbf{Coarea formula.}
Let $\kay\ge m$
and $f\:\EE^\kay\subto\EE^m$ be smooth submap
then
\[
\int\limits_Q|(\dd_x f)^{\wedge m}|\cdot\dd_x\vol_\kay
=
\int\limits_{f(Q)}\vol_{\kay-m}( f^{-1}(y)\cap Q)\cdot\dd_y\vol_m.
\eqlbl{eq:coarea}
\]
for any Borel set $Q\subset \Dom f$.
The identity \ref{eq:coarea} is called {}\emph{the coarea formula};
the right hand side in \ref{eq:coarea} is called \index{coarea}\emph{the coarea of the restriction $f|Q$}.
The coarea formula is a standard result in multivariate calculus.
It admits a number of generalizations,
in particular Federer showed that this formula holds for Lipschitz maps.
Namely he proved the following
\begin{thm}{Federer's coarea formula}\label{thm:coarea-federer}
Let $f\:\EE^\kay\subto\EE^m$ be a locally Lipschitz submap
then coarea formula \ref{eq:coarea} holds
for any Borel set $Q\subset \Dom f$.
\end{thm}
The case $\kay>m$ is proved in \cite[3.2.11]{federer}
and for $\kay=m$ it follows from \cite[3.2.3]{federer} since in this case
$\vol_{\kay-m}=\vol_0$ is the counting measure.
The following exercise includes a version of the so called \index{Besicovitch inequality}\emph{Besicovitch inequality}.
\begin{thm}{Advanced exercise}
\label{ex:besicovitch-inq}
Let $\spc{X}$ be a metric space and
$\map\:[0,1]^{\times m}\to \spc{X}$
be a continuous map.
Set
\begin{align*}
A^i&=\set{(x^1,\dots,x^m)\in [0,1]^{\times m}}{x^i=0},
\\
B^i&=\set{(x^1,\dots,x^m)\in [0,1]^{\times m}}{x^i=1},
\\
a^i&=\dist{\map(A^i)}{\map(B^i)}{\spc{X}}
\end{align*}
\begin{subthm}{}
Show that
\[\LongMes_m (\Im\map) \ge a^1\cdot a^2\cdots a^m.\]
\end{subthm}
\begin{subthm}{}
Show that in general, the inequality
\[\vol_m (\Im\map) \ge a^1\cdot a^2\cdots a^m\]
does not hold.
\end{subthm}
\end{thm}
\section{Singularities of convex functions on $\RR^m$}%ready
\label{sec:sing-of-conv}
\begin{thm}{Definition}
Let $\spc{X}$ be a metric space,
$E\subset \spc{X}$ and $n$ is an integer.
\begin{subthm}{}
The subset $E$ is called
\emph{$n$-rectifiable}\index{rectifiable set}
if there exists a noncontacting map from $E$ to a bounded subset in $\EE^n$
\end{subthm}
\begin{subthm}{}
Let $\Omega$ be an open subset in $\spc{X}$.
The subset $E$ is called
\emph{locally $n$-rectifiable}\index{rectifiable set!locally rectifiable}
in $\Omega$
if for any point $x\in \Omega$ there is a neigborhood $N\ni x$ such that $E\cap N$ is rectifible.
\end{subthm}
\begin{subthm}{}
The subset $E$ is called is called \index{rectifiable set!countably rectifiable}\emph{countably $n$-rectifiable}
if it can be presented as a countable union of rectifible sets.
\end{subthm}
\end{thm}
The following proposition follows directly from definition above.
\begin{thm}{Proposition}\label{prop:finite-union-is-rectifiable}
A finite union of $n$-rectifiable sets is $n$-rectifiable.
\end{thm}
\begin{thm}{Exercise}
Give an example of a set $A$ in $\RR^m$ space with finite
such that $\LongMes_\kay A<\infty$, but $A$ is not $\kay$-rectifiable
for some $\kay<m$.
\end{thm}
%??? We have to find where principle idea of this proof appears.
%Before Zaj\'{\i}\v{c}ek, I see the following refs:
%(1) K. Reidemeister: \"Uber die singul\"aren Randpunkte eines konvexen K\"orpers, Math. Ann. 55(1921), 116--118.
%(2) G. Durand: Sur une generalisation des surfaces convexes, J. Math. Pures Appl. (9), vol. 10 (1931), 335--414.
%(3) Anderson and V. L. Klee, Jr.: Convex functions and upper semi-continuous collections, Duke Math. J. 19 (1952), 349--357.
%(4) A. S. Besicovitch: On singular points of convex surfaces, Convexity, Proceddings of Symposia in pure mathematics, Vol. VII, Providence, Rhode Island 1963. ???
Let $f\:\RR^m\subto\RR$ be a semiconvex subfunction.
In this case the differential
\[\dd_xf\:\RR^m\subto\RR\]
can be defined as the limit
\[\dd_xf(v)=\lim_{\eps\to0}\frac{f(x+\eps\cdot v)-f(x)}{\eps}.\]
It is defined for any $x\in \Dom f$ and it is a convex
homogineus function;
that is,
\[\lam\cdot\dd_xf(v)=\dd_xf(\lam\cdot v)\]
for any
$\lam\ge0$.
A point $x\in\Dom f$ is called
\emph{regular point of $f$}\index{regular point of semiconvex function}
if $\dd_xf$ is linear.
We say that $x$ is
\emph{$\kay$-regular}\index{regular!$\kay$-regular}
if $\dd_xf$ is linear on a $\kay$-dimensional subspace of $\RR^m$.
We say that $x$ is
\emph{$(\kay,\eps)$-regular}\index{regular!$(\kay,\eps)$-regular}
if there is a $\kay$-dimensional subspace $V$ of $\RR^m$
such that the restriction $\dd_xf|V$ is \index{$\eps$-linear function}\emph{$\eps$-linear};
that is, there is a linear function $\ell\:V\to\RR$ such that
\[\ell(v)\le\dd_xf(v)< \ell(v)+\eps\cdot|v|\]
for any nonzero vector $v\in V$.
The subsets of
regular,
$\kay$-regular,
$(\kay,\eps)$-regular,
singular,
$\kay$-singular,
$(\kay,\eps)$-singular
of $\Dom f$
will be denoted as
$\Reg_f$,
$\Reg_f(\kay)$,
$\Reg_f(\kay,\eps)$,
$\Sing_f$,
$\Sing_f(\kay)$,
$\Sing_f(\kay,\eps)$
respectively.
\begin{thm}{Zaj\'{\i}\v{c}ek's theorem}\label{thm:zajicek}
Let $f\:\RR^m\subto\RR$ be a locally Lipschitz
semiconvex subfunction.
Then for any $\kay\le m$ and $\eps>0$ the set
$\Sing_f(\kay,\eps)$ is locally $(\kay-1)$-rectifiable in $\Dom f$.
In particular, for any $\kay\le m$, the set $\Sing_f(\kay)$ is countably $(\kay-1)$-rectifiable
and
$\Sing_f$ is countably $(m-1)$-rectifiable.
\end{thm}
In the proof we will need the following definition.
\begin{thm}{Definition}
A function $f\:\RR^m\to\RR$ is called \index{DC-function}\emph{DC-function} if it can be presented as a difference $f=a-b$ of two convex functions $a,b\:\RR^m\subto\RR$.
(Here DC stands for difference and convex.)
A map $\bm{f}=(f^1,\dots,f^\kay)\:\RR^m\to\RR^\kay$ is called \index{DC-map}\emph{DC-map} if each of its coordinates $f^i$ is a DC-function.
\end{thm}
Since convex function are locally Lipschiz,
we get the following.
\begin{thm}{Proposition}\label{prop:DC=>loc-lip}
Any DC-function $f\:\RR^m\to\RR$ is locally Lipschitz.
\end{thm}
Further we repeat Zaj\'{\i}\v{c}ek's proof from \cite{zajicek}.
First we will show that $\Sing_f(\kay,\eps)$ locally lies in a finite collection of graphs of
DC-functions $\RR^{\kay-1}\to \RR^{m-k+1}$ and then apply Proposition~\ref{prop:DC=>loc-lip}.
\parit{Proof.}
Without loss of generality, we may assume that
$\Dom f$ is convex bounded open set,
$f$ is $\lambda$-concave and $\Lip$-Lipschitz for some for some $\lambda$ and $\Lip$.
Further, passing to a new function
\[f_{\text{new}}(\bm{x})
\df
f(\bm{x})-\tfrac{\lambda}{2}\cdot\|\bm{x}\|_2^2,\]
if nesessury, we may assume that $f$ is concave.
Given a linear subspace $V\subset\RR^m$
and a linear function $\ell\:V\to\RR$
consider the envelop subfunction
$h_{V,\ell}\:\RR^m\subto\RR$ defined as
\[h_{V, \ell}(\bm{x})
=
\sup
\set{f(\bm{x}+\bm{v})+\ell(\bm{v})}%
{\bm{v}\in V};\]
$h_{V, \ell}$ is set to be defined at $\bm{x}$
if $\bm{x}+\bm{v}\in\Dom f$ for some $\bm{v}\in V$.
Let us prove couple of claims.
\begin{clm}{}\label{h-for-zajicek}
The subfunction $h_{V,\ell}(\bm{x})$ is concave.
\end{clm}
Indeed,
let $\bm{x}_0,\bm{x}_1\in\Dom h_{V,\ell}$.
Set $\bm{x}_t=(1-t)\cdot\bm{x}_0+t\cdot\bm{x}_1$.
Clearly $x_t\in \Dom h_{V,\ell}$ for all $t\in[0,1]$.
Let us show that
\[h_{V, \ell}(\bm{x}_t)
\ge
(1-t)\cdot h_{V, \ell}(\bm{x}_0)
+
t\cdot h_{V, \ell}(\bm{x}_1).
\eqlbl{eq:Jensen-for-zajicek}\]
Fix $y_0,y_1\in\RR$ such that $y_i<h_{V, \ell}(\bm{x}_i)$ for $i\in\{1,2\}$.
Then there are $\bm{z}_0,\bm{z}_1\in\Dom f$
such that $\bm{z}_i-\bm{x}_i\in V$
and
\[f(\bm{z}_i)+\ell(\bm{z}_i-\bm{x}_i)>y_i.\]
Set $\bm{z}_t=(1-t)\cdot\bm{z}_0+t\cdot\bm{z}_1$.
Clearly $\bm{z}_t-\bm{x}_t\in V$.
Since $\Dom f$ is convex,
$\bm{z}_t\in \Dom f$ for any $t\in[0,1]$.
Thus
\begin{align*}
h_{V, \ell}(\bm{x}_t)&\ge f(\bm{z}_t)+\ell(\bm{z}_t-\bm{x}_t)
\ge
\\
&\ge(1-t)\cdot[f(\bm{z}_0)+\ell(\bm{z}_0-\bm{x}_0)]
+
t\cdot[f(\bm{z}_1)+\ell(\bm{z}_1-\bm{x}_1)]>
\\
&>(1-t)\cdot y_0+t\cdot y_1.
\end{align*}
Recall that the last inequality holds for any $y_0$ and $y_1$ such that $y_i\z<h_{V, \ell}(\bm{x}_i)$;
hence \ref{eq:Jensen-for-zajicek} follows.
\claimqeds
Let us show that
\begin{clm}{}\label{Zk-for-zajicek}
Let $V$ be a $n$-dimensional subspace of $\EE^m$
and $\bm{\ell}=(\ell^0,\ell^1,\dots\ell^n)\:V\to\RR^{n+1}$
be an array of linear functions such that
$\ell^1,\dots,\ell^n$ are linearly independent and
$\ell^0+\ell^1+\dots+\ell^n=0$.
Then the set $Z[V,\bm{\ell}]$ of all solutions of
\[h_{V, \ell^0}(\bm{x})
=
h_{V, \ell^1}(\bm{x})
=
\dots
=
h_{V, \ell^n}(\bm{x})
\]
forms a subset of a graph of a $\DC$-submap $H\:V^\bot\subto V$.
\end{clm}
Indeed, set $h^i=h_{V,\ell^i}$.
Note that for fixed $\bm{x}\in V^\bot$
and
$\bm{v}\in V$,
\[h^i(\bm{x}+\bm{v})
=
h^i(\bm{x})-\ell^i(\bm{v}).\]
It follows that for each $\bm{x}\in V^\bot$ there is unique $\bm{v}\in V$ such that
\[h^0(\bm{x}+\bm{v})
=
h^1(\bm{x}+\bm{v})
=
\dots
=
h^n(\bm{x}+\bm{v})
\eqlbl{eq:h_(V-ell)}
\]
More over there is a linear operator $L\:\RR^{n+1}\to V$
such that \ref{eq:h_(V-ell)} hols for
\[\bm{v}\z=L\circ\bm{h}(x).\]
Since the restrictions $h^i|V^\bot$ are concave,
we get that $\bm{x}\mapsto \bm{v}(\bm{x})$ is a DC-map.
Applying Proposition~\ref{prop:DC=>loc-lip}, we get \ref{Zk-for-zajicek}.
\claimqeds
Note that for any point $z\in \Sing_f(\kay,\eps)$ there is a subspace $V$ of dimension $n\df m-\kay+1$
and an array of linear functions $\ell^0,\ell^1,\dots\ell^{n}$ as above such that $z\in Z(V,\bm{\ell})$.
Moreover any point $x\in \Dom f$ has a neigborhood $\oBall(\eps,x)$ such that
all points in $\oBall(\eps,x)\cap\Sing_f(\kay,\eps)$ are covered by finite number of sets $Z(V,\bm{\ell})$ as above. %???WHY???
According to Claim~\ref{Zk-for-zajicek}, sets $Z(V,\bm{\ell})$ is $(\kay-1)$-rectifable.
According to Proposition~\ref{prop:finite-union-is-rectifiable},
$\Sing_f(\kay,\eps)$ is locally $(\kay-1)$-rectifable in $\Dom f$.
Since
\[\Sing_f(\kay)=\bigcup_{n\in\ZZ_>}\Sing_f(\kay,\tfrac1n),\]
the set $\Sing_f(\kay)$ is countably $(\kay-1)$-rectifable.
Since
\[\Sing_f=\Sing_f(m),\]
the set $\Sing_f$ is countably $(m-1)$-rectifable.
\qeds