forked from llvm-mirror/clang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCGBlocks.cpp
2640 lines (2200 loc) · 97.9 KB
/
CGBlocks.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- CGBlocks.cpp - Emit LLVM Code for declarations ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit blocks.
//
//===----------------------------------------------------------------------===//
#include "CGBlocks.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/DeclObjC.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include <algorithm>
#include <cstdio>
using namespace clang;
using namespace CodeGen;
CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name)
: Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false),
HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false),
LocalAddress(Address::invalid()), StructureType(nullptr), Block(block),
DominatingIP(nullptr) {
// Skip asm prefix, if any. 'name' is usually taken directly from
// the mangled name of the enclosing function.
if (!name.empty() && name[0] == '\01')
name = name.substr(1);
}
// Anchor the vtable to this translation unit.
BlockByrefHelpers::~BlockByrefHelpers() {}
/// Build the given block as a global block.
static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM,
const CGBlockInfo &blockInfo,
llvm::Constant *blockFn);
/// Build the helper function to copy a block.
static llvm::Constant *buildCopyHelper(CodeGenModule &CGM,
const CGBlockInfo &blockInfo) {
return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo);
}
/// Build the helper function to dispose of a block.
static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM,
const CGBlockInfo &blockInfo) {
return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo);
}
/// buildBlockDescriptor - Build the block descriptor meta-data for a block.
/// buildBlockDescriptor is accessed from 5th field of the Block_literal
/// meta-data and contains stationary information about the block literal.
/// Its definition will have 4 (or optionally 6) words.
/// \code
/// struct Block_descriptor {
/// unsigned long reserved;
/// unsigned long size; // size of Block_literal metadata in bytes.
/// void *copy_func_helper_decl; // optional copy helper.
/// void *destroy_func_decl; // optioanl destructor helper.
/// void *block_method_encoding_address; // @encode for block literal signature.
/// void *block_layout_info; // encoding of captured block variables.
/// };
/// \endcode
static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM,
const CGBlockInfo &blockInfo) {
ASTContext &C = CGM.getContext();
llvm::IntegerType *ulong =
cast<llvm::IntegerType>(CGM.getTypes().ConvertType(C.UnsignedLongTy));
llvm::PointerType *i8p = nullptr;
if (CGM.getLangOpts().OpenCL)
i8p =
llvm::Type::getInt8PtrTy(
CGM.getLLVMContext(), C.getTargetAddressSpace(LangAS::opencl_constant));
else
i8p = CGM.VoidPtrTy;
ConstantInitBuilder builder(CGM);
auto elements = builder.beginStruct();
// reserved
elements.addInt(ulong, 0);
// Size
// FIXME: What is the right way to say this doesn't fit? We should give
// a user diagnostic in that case. Better fix would be to change the
// API to size_t.
elements.addInt(ulong, blockInfo.BlockSize.getQuantity());
// Optional copy/dispose helpers.
if (blockInfo.NeedsCopyDispose) {
// copy_func_helper_decl
elements.add(buildCopyHelper(CGM, blockInfo));
// destroy_func_decl
elements.add(buildDisposeHelper(CGM, blockInfo));
}
// Signature. Mandatory ObjC-style method descriptor @encode sequence.
std::string typeAtEncoding =
CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr());
elements.add(llvm::ConstantExpr::getBitCast(
CGM.GetAddrOfConstantCString(typeAtEncoding).getPointer(), i8p));
// GC layout.
if (C.getLangOpts().ObjC1) {
if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
elements.add(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo));
else
elements.add(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo));
}
else
elements.addNullPointer(i8p);
unsigned AddrSpace = 0;
if (C.getLangOpts().OpenCL)
AddrSpace = C.getTargetAddressSpace(LangAS::opencl_constant);
llvm::GlobalVariable *global =
elements.finishAndCreateGlobal("__block_descriptor_tmp",
CGM.getPointerAlign(),
/*constant*/ true,
llvm::GlobalValue::InternalLinkage,
AddrSpace);
return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType());
}
/*
Purely notional variadic template describing the layout of a block.
template <class _ResultType, class... _ParamTypes, class... _CaptureTypes>
struct Block_literal {
/// Initialized to one of:
/// extern void *_NSConcreteStackBlock[];
/// extern void *_NSConcreteGlobalBlock[];
///
/// In theory, we could start one off malloc'ed by setting
/// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using
/// this isa:
/// extern void *_NSConcreteMallocBlock[];
struct objc_class *isa;
/// These are the flags (with corresponding bit number) that the
/// compiler is actually supposed to know about.
/// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block
/// descriptor provides copy and dispose helper functions
/// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured
/// object with a nontrivial destructor or copy constructor
/// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated
/// as global memory
/// 29. BLOCK_USE_STRET - indicates that the block function
/// uses stret, which objc_msgSend needs to know about
/// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an
/// @encoded signature string
/// And we're not supposed to manipulate these:
/// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved
/// to malloc'ed memory
/// 27. BLOCK_IS_GC - indicates that the block has been moved to
/// to GC-allocated memory
/// Additionally, the bottom 16 bits are a reference count which
/// should be zero on the stack.
int flags;
/// Reserved; should be zero-initialized.
int reserved;
/// Function pointer generated from block literal.
_ResultType (*invoke)(Block_literal *, _ParamTypes...);
/// Block description metadata generated from block literal.
struct Block_descriptor *block_descriptor;
/// Captured values follow.
_CapturesTypes captures...;
};
*/
namespace {
/// A chunk of data that we actually have to capture in the block.
struct BlockLayoutChunk {
CharUnits Alignment;
CharUnits Size;
Qualifiers::ObjCLifetime Lifetime;
const BlockDecl::Capture *Capture; // null for 'this'
llvm::Type *Type;
QualType FieldType;
BlockLayoutChunk(CharUnits align, CharUnits size,
Qualifiers::ObjCLifetime lifetime,
const BlockDecl::Capture *capture,
llvm::Type *type, QualType fieldType)
: Alignment(align), Size(size), Lifetime(lifetime),
Capture(capture), Type(type), FieldType(fieldType) {}
/// Tell the block info that this chunk has the given field index.
void setIndex(CGBlockInfo &info, unsigned index, CharUnits offset) {
if (!Capture) {
info.CXXThisIndex = index;
info.CXXThisOffset = offset;
} else {
auto C = CGBlockInfo::Capture::makeIndex(index, offset, FieldType);
info.Captures.insert({Capture->getVariable(), C});
}
}
};
/// Order by 1) all __strong together 2) next, all byfref together 3) next,
/// all __weak together. Preserve descending alignment in all situations.
bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) {
if (left.Alignment != right.Alignment)
return left.Alignment > right.Alignment;
auto getPrefOrder = [](const BlockLayoutChunk &chunk) {
if (chunk.Capture && chunk.Capture->isByRef())
return 1;
if (chunk.Lifetime == Qualifiers::OCL_Strong)
return 0;
if (chunk.Lifetime == Qualifiers::OCL_Weak)
return 2;
return 3;
};
return getPrefOrder(left) < getPrefOrder(right);
}
} // end anonymous namespace
/// Determines if the given type is safe for constant capture in C++.
static bool isSafeForCXXConstantCapture(QualType type) {
const RecordType *recordType =
type->getBaseElementTypeUnsafe()->getAs<RecordType>();
// Only records can be unsafe.
if (!recordType) return true;
const auto *record = cast<CXXRecordDecl>(recordType->getDecl());
// Maintain semantics for classes with non-trivial dtors or copy ctors.
if (!record->hasTrivialDestructor()) return false;
if (record->hasNonTrivialCopyConstructor()) return false;
// Otherwise, we just have to make sure there aren't any mutable
// fields that might have changed since initialization.
return !record->hasMutableFields();
}
/// It is illegal to modify a const object after initialization.
/// Therefore, if a const object has a constant initializer, we don't
/// actually need to keep storage for it in the block; we'll just
/// rematerialize it at the start of the block function. This is
/// acceptable because we make no promises about address stability of
/// captured variables.
static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM,
CodeGenFunction *CGF,
const VarDecl *var) {
// Return if this is a function parameter. We shouldn't try to
// rematerialize default arguments of function parameters.
if (isa<ParmVarDecl>(var))
return nullptr;
QualType type = var->getType();
// We can only do this if the variable is const.
if (!type.isConstQualified()) return nullptr;
// Furthermore, in C++ we have to worry about mutable fields:
// C++ [dcl.type.cv]p4:
// Except that any class member declared mutable can be
// modified, any attempt to modify a const object during its
// lifetime results in undefined behavior.
if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type))
return nullptr;
// If the variable doesn't have any initializer (shouldn't this be
// invalid?), it's not clear what we should do. Maybe capture as
// zero?
const Expr *init = var->getInit();
if (!init) return nullptr;
return ConstantEmitter(CGM, CGF).tryEmitAbstractForInitializer(*var);
}
/// Get the low bit of a nonzero character count. This is the
/// alignment of the nth byte if the 0th byte is universally aligned.
static CharUnits getLowBit(CharUnits v) {
return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1));
}
static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info,
SmallVectorImpl<llvm::Type*> &elementTypes) {
assert(elementTypes.empty());
if (CGM.getLangOpts().OpenCL) {
// The header is basically 'struct { int; int;
// custom_fields; }'. Assert that struct is packed.
elementTypes.push_back(CGM.IntTy); /* total size */
elementTypes.push_back(CGM.IntTy); /* align */
unsigned Offset = 2 * CGM.getIntSize().getQuantity();
unsigned BlockAlign = CGM.getIntAlign().getQuantity();
if (auto *Helper =
CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) {
for (auto I : Helper->getCustomFieldTypes()) /* custom fields */ {
// TargetOpenCLBlockHelp needs to make sure the struct is packed.
// If necessary, add padding fields to the custom fields.
unsigned Align = CGM.getDataLayout().getABITypeAlignment(I);
if (BlockAlign < Align)
BlockAlign = Align;
assert(Offset % Align == 0);
Offset += CGM.getDataLayout().getTypeAllocSize(I);
elementTypes.push_back(I);
}
}
info.BlockAlign = CharUnits::fromQuantity(BlockAlign);
info.BlockSize = CharUnits::fromQuantity(Offset);
} else {
// The header is basically 'struct { void *; int; int; void *; void *; }'.
// Assert that the struct is packed.
assert(CGM.getIntSize() <= CGM.getPointerSize());
assert(CGM.getIntAlign() <= CGM.getPointerAlign());
assert((2 * CGM.getIntSize()).isMultipleOf(CGM.getPointerAlign()));
info.BlockAlign = CGM.getPointerAlign();
info.BlockSize = 3 * CGM.getPointerSize() + 2 * CGM.getIntSize();
elementTypes.push_back(CGM.VoidPtrTy);
elementTypes.push_back(CGM.IntTy);
elementTypes.push_back(CGM.IntTy);
elementTypes.push_back(CGM.VoidPtrTy);
elementTypes.push_back(CGM.getBlockDescriptorType());
}
}
static QualType getCaptureFieldType(const CodeGenFunction &CGF,
const BlockDecl::Capture &CI) {
const VarDecl *VD = CI.getVariable();
// If the variable is captured by an enclosing block or lambda expression,
// use the type of the capture field.
if (CGF.BlockInfo && CI.isNested())
return CGF.BlockInfo->getCapture(VD).fieldType();
if (auto *FD = CGF.LambdaCaptureFields.lookup(VD))
return FD->getType();
return VD->getType();
}
/// Compute the layout of the given block. Attempts to lay the block
/// out with minimal space requirements.
static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF,
CGBlockInfo &info) {
ASTContext &C = CGM.getContext();
const BlockDecl *block = info.getBlockDecl();
SmallVector<llvm::Type*, 8> elementTypes;
initializeForBlockHeader(CGM, info, elementTypes);
bool hasNonConstantCustomFields = false;
if (auto *OpenCLHelper =
CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper())
hasNonConstantCustomFields =
!OpenCLHelper->areAllCustomFieldValuesConstant(info);
if (!block->hasCaptures() && !hasNonConstantCustomFields) {
info.StructureType =
llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
info.CanBeGlobal = true;
return;
}
else if (C.getLangOpts().ObjC1 &&
CGM.getLangOpts().getGC() == LangOptions::NonGC)
info.HasCapturedVariableLayout = true;
// Collect the layout chunks.
SmallVector<BlockLayoutChunk, 16> layout;
layout.reserve(block->capturesCXXThis() +
(block->capture_end() - block->capture_begin()));
CharUnits maxFieldAlign;
// First, 'this'.
if (block->capturesCXXThis()) {
assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) &&
"Can't capture 'this' outside a method");
QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType(C);
// Theoretically, this could be in a different address space, so
// don't assume standard pointer size/align.
llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType);
std::pair<CharUnits,CharUnits> tinfo
= CGM.getContext().getTypeInfoInChars(thisType);
maxFieldAlign = std::max(maxFieldAlign, tinfo.second);
layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first,
Qualifiers::OCL_None,
nullptr, llvmType, thisType));
}
// Next, all the block captures.
for (const auto &CI : block->captures()) {
const VarDecl *variable = CI.getVariable();
if (CI.isByRef()) {
// We have to copy/dispose of the __block reference.
info.NeedsCopyDispose = true;
// Just use void* instead of a pointer to the byref type.
CharUnits align = CGM.getPointerAlign();
maxFieldAlign = std::max(maxFieldAlign, align);
layout.push_back(BlockLayoutChunk(align, CGM.getPointerSize(),
Qualifiers::OCL_None, &CI,
CGM.VoidPtrTy, variable->getType()));
continue;
}
// Otherwise, build a layout chunk with the size and alignment of
// the declaration.
if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) {
info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant);
continue;
}
// If we have a lifetime qualifier, honor it for capture purposes.
// That includes *not* copying it if it's __unsafe_unretained.
Qualifiers::ObjCLifetime lifetime =
variable->getType().getObjCLifetime();
if (lifetime) {
switch (lifetime) {
case Qualifiers::OCL_None: llvm_unreachable("impossible");
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
break;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
info.NeedsCopyDispose = true;
}
// Block pointers require copy/dispose. So do Objective-C pointers.
} else if (variable->getType()->isObjCRetainableType()) {
// But honor the inert __unsafe_unretained qualifier, which doesn't
// actually make it into the type system.
if (variable->getType()->isObjCInertUnsafeUnretainedType()) {
lifetime = Qualifiers::OCL_ExplicitNone;
} else {
info.NeedsCopyDispose = true;
// used for mrr below.
lifetime = Qualifiers::OCL_Strong;
}
// So do types that require non-trivial copy construction.
} else if (CI.hasCopyExpr()) {
info.NeedsCopyDispose = true;
info.HasCXXObject = true;
// So do C structs that require non-trivial copy construction or
// destruction.
} else if (variable->getType().isNonTrivialToPrimitiveCopy() ==
QualType::PCK_Struct ||
variable->getType().isDestructedType() ==
QualType::DK_nontrivial_c_struct) {
info.NeedsCopyDispose = true;
// And so do types with destructors.
} else if (CGM.getLangOpts().CPlusPlus) {
if (const CXXRecordDecl *record =
variable->getType()->getAsCXXRecordDecl()) {
if (!record->hasTrivialDestructor()) {
info.HasCXXObject = true;
info.NeedsCopyDispose = true;
}
}
}
QualType VT = getCaptureFieldType(*CGF, CI);
CharUnits size = C.getTypeSizeInChars(VT);
CharUnits align = C.getDeclAlign(variable);
maxFieldAlign = std::max(maxFieldAlign, align);
llvm::Type *llvmType =
CGM.getTypes().ConvertTypeForMem(VT);
layout.push_back(
BlockLayoutChunk(align, size, lifetime, &CI, llvmType, VT));
}
// If that was everything, we're done here.
if (layout.empty()) {
info.StructureType =
llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
info.CanBeGlobal = true;
return;
}
// Sort the layout by alignment. We have to use a stable sort here
// to get reproducible results. There should probably be an
// llvm::array_pod_stable_sort.
std::stable_sort(layout.begin(), layout.end());
// Needed for blocks layout info.
info.BlockHeaderForcedGapOffset = info.BlockSize;
info.BlockHeaderForcedGapSize = CharUnits::Zero();
CharUnits &blockSize = info.BlockSize;
info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign);
// Assuming that the first byte in the header is maximally aligned,
// get the alignment of the first byte following the header.
CharUnits endAlign = getLowBit(blockSize);
// If the end of the header isn't satisfactorily aligned for the
// maximum thing, look for things that are okay with the header-end
// alignment, and keep appending them until we get something that's
// aligned right. This algorithm is only guaranteed optimal if
// that condition is satisfied at some point; otherwise we can get
// things like:
// header // next byte has alignment 4
// something_with_size_5; // next byte has alignment 1
// something_with_alignment_8;
// which has 7 bytes of padding, as opposed to the naive solution
// which might have less (?).
if (endAlign < maxFieldAlign) {
SmallVectorImpl<BlockLayoutChunk>::iterator
li = layout.begin() + 1, le = layout.end();
// Look for something that the header end is already
// satisfactorily aligned for.
for (; li != le && endAlign < li->Alignment; ++li)
;
// If we found something that's naturally aligned for the end of
// the header, keep adding things...
if (li != le) {
SmallVectorImpl<BlockLayoutChunk>::iterator first = li;
for (; li != le; ++li) {
assert(endAlign >= li->Alignment);
li->setIndex(info, elementTypes.size(), blockSize);
elementTypes.push_back(li->Type);
blockSize += li->Size;
endAlign = getLowBit(blockSize);
// ...until we get to the alignment of the maximum field.
if (endAlign >= maxFieldAlign) {
break;
}
}
// Don't re-append everything we just appended.
layout.erase(first, li);
}
}
assert(endAlign == getLowBit(blockSize));
// At this point, we just have to add padding if the end align still
// isn't aligned right.
if (endAlign < maxFieldAlign) {
CharUnits newBlockSize = blockSize.alignTo(maxFieldAlign);
CharUnits padding = newBlockSize - blockSize;
// If we haven't yet added any fields, remember that there was an
// initial gap; this need to go into the block layout bit map.
if (blockSize == info.BlockHeaderForcedGapOffset) {
info.BlockHeaderForcedGapSize = padding;
}
elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty,
padding.getQuantity()));
blockSize = newBlockSize;
endAlign = getLowBit(blockSize); // might be > maxFieldAlign
}
assert(endAlign >= maxFieldAlign);
assert(endAlign == getLowBit(blockSize));
// Slam everything else on now. This works because they have
// strictly decreasing alignment and we expect that size is always a
// multiple of alignment.
for (SmallVectorImpl<BlockLayoutChunk>::iterator
li = layout.begin(), le = layout.end(); li != le; ++li) {
if (endAlign < li->Alignment) {
// size may not be multiple of alignment. This can only happen with
// an over-aligned variable. We will be adding a padding field to
// make the size be multiple of alignment.
CharUnits padding = li->Alignment - endAlign;
elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty,
padding.getQuantity()));
blockSize += padding;
endAlign = getLowBit(blockSize);
}
assert(endAlign >= li->Alignment);
li->setIndex(info, elementTypes.size(), blockSize);
elementTypes.push_back(li->Type);
blockSize += li->Size;
endAlign = getLowBit(blockSize);
}
info.StructureType =
llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
}
/// Enter the scope of a block. This should be run at the entrance to
/// a full-expression so that the block's cleanups are pushed at the
/// right place in the stack.
static void enterBlockScope(CodeGenFunction &CGF, BlockDecl *block) {
assert(CGF.HaveInsertPoint());
// Allocate the block info and place it at the head of the list.
CGBlockInfo &blockInfo =
*new CGBlockInfo(block, CGF.CurFn->getName());
blockInfo.NextBlockInfo = CGF.FirstBlockInfo;
CGF.FirstBlockInfo = &blockInfo;
// Compute information about the layout, etc., of this block,
// pushing cleanups as necessary.
computeBlockInfo(CGF.CGM, &CGF, blockInfo);
// Nothing else to do if it can be global.
if (blockInfo.CanBeGlobal) return;
// Make the allocation for the block.
blockInfo.LocalAddress = CGF.CreateTempAlloca(blockInfo.StructureType,
blockInfo.BlockAlign, "block");
// If there are cleanups to emit, enter them (but inactive).
if (!blockInfo.NeedsCopyDispose) return;
// Walk through the captures (in order) and find the ones not
// captured by constant.
for (const auto &CI : block->captures()) {
// Ignore __block captures; there's nothing special in the
// on-stack block that we need to do for them.
if (CI.isByRef()) continue;
// Ignore variables that are constant-captured.
const VarDecl *variable = CI.getVariable();
CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
if (capture.isConstant()) continue;
// Ignore objects that aren't destructed.
QualType VT = getCaptureFieldType(CGF, CI);
QualType::DestructionKind dtorKind = VT.isDestructedType();
if (dtorKind == QualType::DK_none) continue;
CodeGenFunction::Destroyer *destroyer;
// Block captures count as local values and have imprecise semantics.
// They also can't be arrays, so need to worry about that.
//
// For const-qualified captures, emit clang.arc.use to ensure the captured
// object doesn't get released while we are still depending on its validity
// within the block.
if (VT.isConstQualified() &&
VT.getObjCLifetime() == Qualifiers::OCL_Strong &&
CGF.CGM.getCodeGenOpts().OptimizationLevel != 0) {
assert(CGF.CGM.getLangOpts().ObjCAutoRefCount &&
"expected ObjC ARC to be enabled");
destroyer = CodeGenFunction::emitARCIntrinsicUse;
} else if (dtorKind == QualType::DK_objc_strong_lifetime) {
destroyer = CodeGenFunction::destroyARCStrongImprecise;
} else {
destroyer = CGF.getDestroyer(dtorKind);
}
// GEP down to the address.
Address addr = CGF.Builder.CreateStructGEP(blockInfo.LocalAddress,
capture.getIndex(),
capture.getOffset());
// We can use that GEP as the dominating IP.
if (!blockInfo.DominatingIP)
blockInfo.DominatingIP = cast<llvm::Instruction>(addr.getPointer());
CleanupKind cleanupKind = InactiveNormalCleanup;
bool useArrayEHCleanup = CGF.needsEHCleanup(dtorKind);
if (useArrayEHCleanup)
cleanupKind = InactiveNormalAndEHCleanup;
CGF.pushDestroy(cleanupKind, addr, VT,
destroyer, useArrayEHCleanup);
// Remember where that cleanup was.
capture.setCleanup(CGF.EHStack.stable_begin());
}
}
/// Enter a full-expression with a non-trivial number of objects to
/// clean up. This is in this file because, at the moment, the only
/// kind of cleanup object is a BlockDecl*.
void CodeGenFunction::enterNonTrivialFullExpression(const ExprWithCleanups *E) {
assert(E->getNumObjects() != 0);
for (const ExprWithCleanups::CleanupObject &C : E->getObjects())
enterBlockScope(*this, C);
}
/// Find the layout for the given block in a linked list and remove it.
static CGBlockInfo *findAndRemoveBlockInfo(CGBlockInfo **head,
const BlockDecl *block) {
while (true) {
assert(head && *head);
CGBlockInfo *cur = *head;
// If this is the block we're looking for, splice it out of the list.
if (cur->getBlockDecl() == block) {
*head = cur->NextBlockInfo;
return cur;
}
head = &cur->NextBlockInfo;
}
}
/// Destroy a chain of block layouts.
void CodeGenFunction::destroyBlockInfos(CGBlockInfo *head) {
assert(head && "destroying an empty chain");
do {
CGBlockInfo *cur = head;
head = cur->NextBlockInfo;
delete cur;
} while (head != nullptr);
}
/// Emit a block literal expression in the current function.
llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) {
// If the block has no captures, we won't have a pre-computed
// layout for it.
if (!blockExpr->getBlockDecl()->hasCaptures()) {
// The block literal is emitted as a global variable, and the block invoke
// function has to be extracted from its initializer.
if (llvm::Constant *Block = CGM.getAddrOfGlobalBlockIfEmitted(blockExpr)) {
return Block;
}
CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName());
computeBlockInfo(CGM, this, blockInfo);
blockInfo.BlockExpression = blockExpr;
return EmitBlockLiteral(blockInfo);
}
// Find the block info for this block and take ownership of it.
std::unique_ptr<CGBlockInfo> blockInfo;
blockInfo.reset(findAndRemoveBlockInfo(&FirstBlockInfo,
blockExpr->getBlockDecl()));
blockInfo->BlockExpression = blockExpr;
return EmitBlockLiteral(*blockInfo);
}
llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) {
bool IsOpenCL = CGM.getContext().getLangOpts().OpenCL;
// Using the computed layout, generate the actual block function.
bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda();
CodeGenFunction BlockCGF{CGM, true};
BlockCGF.SanOpts = SanOpts;
auto *InvokeFn = BlockCGF.GenerateBlockFunction(
CurGD, blockInfo, LocalDeclMap, isLambdaConv, blockInfo.CanBeGlobal);
// If there is nothing to capture, we can emit this as a global block.
if (blockInfo.CanBeGlobal)
return CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression);
// Otherwise, we have to emit this as a local block.
Address blockAddr = blockInfo.LocalAddress;
assert(blockAddr.isValid() && "block has no address!");
llvm::Constant *isa;
llvm::Constant *descriptor;
BlockFlags flags;
if (!IsOpenCL) {
isa = llvm::ConstantExpr::getBitCast(CGM.getNSConcreteStackBlock(),
VoidPtrTy);
// Build the block descriptor.
descriptor = buildBlockDescriptor(CGM, blockInfo);
// Compute the initial on-stack block flags.
flags = BLOCK_HAS_SIGNATURE;
if (blockInfo.HasCapturedVariableLayout)
flags |= BLOCK_HAS_EXTENDED_LAYOUT;
if (blockInfo.NeedsCopyDispose)
flags |= BLOCK_HAS_COPY_DISPOSE;
if (blockInfo.HasCXXObject)
flags |= BLOCK_HAS_CXX_OBJ;
if (blockInfo.UsesStret)
flags |= BLOCK_USE_STRET;
}
auto projectField =
[&](unsigned index, CharUnits offset, const Twine &name) -> Address {
return Builder.CreateStructGEP(blockAddr, index, offset, name);
};
auto storeField =
[&](llvm::Value *value, unsigned index, CharUnits offset,
const Twine &name) {
Builder.CreateStore(value, projectField(index, offset, name));
};
// Initialize the block header.
{
// We assume all the header fields are densely packed.
unsigned index = 0;
CharUnits offset;
auto addHeaderField =
[&](llvm::Value *value, CharUnits size, const Twine &name) {
storeField(value, index, offset, name);
offset += size;
index++;
};
if (!IsOpenCL) {
addHeaderField(isa, getPointerSize(), "block.isa");
addHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()),
getIntSize(), "block.flags");
addHeaderField(llvm::ConstantInt::get(IntTy, 0), getIntSize(),
"block.reserved");
} else {
addHeaderField(
llvm::ConstantInt::get(IntTy, blockInfo.BlockSize.getQuantity()),
getIntSize(), "block.size");
addHeaderField(
llvm::ConstantInt::get(IntTy, blockInfo.BlockAlign.getQuantity()),
getIntSize(), "block.align");
}
if (!IsOpenCL) {
addHeaderField(llvm::ConstantExpr::getBitCast(InvokeFn, VoidPtrTy),
getPointerSize(), "block.invoke");
addHeaderField(descriptor, getPointerSize(), "block.descriptor");
} else if (auto *Helper =
CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) {
for (auto I : Helper->getCustomFieldValues(*this, blockInfo)) {
addHeaderField(
I.first,
CharUnits::fromQuantity(
CGM.getDataLayout().getTypeAllocSize(I.first->getType())),
I.second);
}
}
}
// Finally, capture all the values into the block.
const BlockDecl *blockDecl = blockInfo.getBlockDecl();
// First, 'this'.
if (blockDecl->capturesCXXThis()) {
Address addr = projectField(blockInfo.CXXThisIndex, blockInfo.CXXThisOffset,
"block.captured-this.addr");
Builder.CreateStore(LoadCXXThis(), addr);
}
// Next, captured variables.
for (const auto &CI : blockDecl->captures()) {
const VarDecl *variable = CI.getVariable();
const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
// Ignore constant captures.
if (capture.isConstant()) continue;
QualType type = capture.fieldType();
// This will be a [[type]]*, except that a byref entry will just be
// an i8**.
Address blockField =
projectField(capture.getIndex(), capture.getOffset(), "block.captured");
// Compute the address of the thing we're going to move into the
// block literal.
Address src = Address::invalid();
if (blockDecl->isConversionFromLambda()) {
// The lambda capture in a lambda's conversion-to-block-pointer is
// special; we'll simply emit it directly.
src = Address::invalid();
} else if (CI.isByRef()) {
if (BlockInfo && CI.isNested()) {
// We need to use the capture from the enclosing block.
const CGBlockInfo::Capture &enclosingCapture =
BlockInfo->getCapture(variable);
// This is a [[type]]*, except that a byref entry will just be an i8**.
src = Builder.CreateStructGEP(LoadBlockStruct(),
enclosingCapture.getIndex(),
enclosingCapture.getOffset(),
"block.capture.addr");
} else {
auto I = LocalDeclMap.find(variable);
assert(I != LocalDeclMap.end());
src = I->second;
}
} else {
DeclRefExpr declRef(const_cast<VarDecl *>(variable),
/*RefersToEnclosingVariableOrCapture*/ CI.isNested(),
type.getNonReferenceType(), VK_LValue,
SourceLocation());
src = EmitDeclRefLValue(&declRef).getAddress();
};
// For byrefs, we just write the pointer to the byref struct into
// the block field. There's no need to chase the forwarding
// pointer at this point, since we're building something that will
// live a shorter life than the stack byref anyway.
if (CI.isByRef()) {
// Get a void* that points to the byref struct.
llvm::Value *byrefPointer;
if (CI.isNested())
byrefPointer = Builder.CreateLoad(src, "byref.capture");
else
byrefPointer = Builder.CreateBitCast(src.getPointer(), VoidPtrTy);
// Write that void* into the capture field.
Builder.CreateStore(byrefPointer, blockField);
// If we have a copy constructor, evaluate that into the block field.
} else if (const Expr *copyExpr = CI.getCopyExpr()) {
if (blockDecl->isConversionFromLambda()) {
// If we have a lambda conversion, emit the expression
// directly into the block instead.
AggValueSlot Slot =
AggValueSlot::forAddr(blockField, Qualifiers(),
AggValueSlot::IsDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased,
AggValueSlot::DoesNotOverlap);
EmitAggExpr(copyExpr, Slot);
} else {
EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr);
}
// If it's a reference variable, copy the reference into the block field.
} else if (type->isReferenceType()) {
Builder.CreateStore(src.getPointer(), blockField);
// If type is const-qualified, copy the value into the block field.
} else if (type.isConstQualified() &&
type.getObjCLifetime() == Qualifiers::OCL_Strong &&
CGM.getCodeGenOpts().OptimizationLevel != 0) {
llvm::Value *value = Builder.CreateLoad(src, "captured");
Builder.CreateStore(value, blockField);
// If this is an ARC __strong block-pointer variable, don't do a
// block copy.
//
// TODO: this can be generalized into the normal initialization logic:
// we should never need to do a block-copy when initializing a local
// variable, because the local variable's lifetime should be strictly
// contained within the stack block's.
} else if (type.getObjCLifetime() == Qualifiers::OCL_Strong &&
type->isBlockPointerType()) {
// Load the block and do a simple retain.
llvm::Value *value = Builder.CreateLoad(src, "block.captured_block");
value = EmitARCRetainNonBlock(value);
// Do a primitive store to the block field.
Builder.CreateStore(value, blockField);
// Otherwise, fake up a POD copy into the block field.
} else {
// Fake up a new variable so that EmitScalarInit doesn't think
// we're referring to the variable in its own initializer.
ImplicitParamDecl BlockFieldPseudoVar(getContext(), type,
ImplicitParamDecl::Other);
// We use one of these or the other depending on whether the
// reference is nested.
DeclRefExpr declRef(const_cast<VarDecl *>(variable),
/*RefersToEnclosingVariableOrCapture*/ CI.isNested(),
type, VK_LValue, SourceLocation());
ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue,
&declRef, VK_RValue);
// FIXME: Pass a specific location for the expr init so that the store is
// attributed to a reasonable location - otherwise it may be attributed to
// locations of subexpressions in the initialization.
EmitExprAsInit(&l2r, &BlockFieldPseudoVar,
MakeAddrLValue(blockField, type, AlignmentSource::Decl),
/*captured by init*/ false);
}
// Activate the cleanup if layout pushed one.
if (!CI.isByRef()) {
EHScopeStack::stable_iterator cleanup = capture.getCleanup();
if (cleanup.isValid())
ActivateCleanupBlock(cleanup, blockInfo.DominatingIP);
}
}
// Cast to the converted block-pointer type, which happens (somewhat
// unfortunately) to be a pointer to function type.
llvm::Value *result = Builder.CreatePointerCast(
blockAddr.getPointer(), ConvertType(blockInfo.getBlockExpr()->getType()));