Skip to content

anvaka/ngraph.centrality

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ngraph.centrality build status

Library computes centrality for entire graph and returns object, where keys are nodes' identifiers and values are centrality values:

{
  node_1: centrality_value_for_node_1,
  node_2: centrality_value_for_node_2
  // ...
}

usage

var centrality = require('ngraph.centrality');
var g = require('ngraph.graph')();

// Let's build a simple graph:
g.addLink('fortran', 'c');
g.addLink('c', 'c++');
g.addLink('c++', 'perl');
g.addLink('c', 'javascript');

// this will consider graph as undirected:
var degreeCentrality = centrality.degree(g);

/*
degreeCentrality is:
{
  "fortran": 1,
  "c": 3,
  "c++": 2,
  "perl": 1,
  "javascript": 1
}
*/

// This will compute in-centrality:
var inCentrality = centrality.degree(g, 'in');
/* inCentrality is 
{
  "fortran": 0,
  "c": 1,
  "c++": 1,
  "perl": 1,
  "javascript": 1
}
*/

// out-centrality:
var outCentrality = centrality.degree(g, 'out');
/* outCentrality is
{
  "fortran": 1,
  "c": 2,
  "c++": 1,
  "perl": 0,
  "javascript": 0
}
*/

// You can also pass 'inout' or 'both' to get same results
// as `degreeCentrality`
var sameAsDegreeCentrality = centrality.degree(g, 'inout');

Performance of degree centrality calculation is:

  • inout: O(n), where n is number of nodes
  • in or out: O(n * a), where a is the average number of edges per node
var centrality = require('ngraph.centrality');
var g = require('ngraph.graph')();
// Let's use the same graph as before:
g.addLink('fortran', 'c');
g.addLink('c', 'c++');
g.addLink('c++', 'perl');
g.addLink('c', 'javascript');

// this will consider graph as undirected:
var betweenness = centrality.betweenness(g);
/* betweenness centrality is:

{
  "fortran": 0,
  "c": 5,
  "c++": 3,
  "perl": 0,
  "javascript": 0
}
*/

// this will consider graph as directed:
var directedBetweenness = centrality.betweenness(g, true);
/* directedBetweenness is:
{
  "fortran": 0,
  "c": 3,
  "c++": 2,
  "perl": 0,
  "javascript": 0
}
*/

Performance of betweenness calculation is O(n * e) time, and O(n + e) space where n is number of nodes and e is number of edges.

This library implements Brandes's algorithm published in A Faster Algorithm for Betweenness Centrality and further discussed in On Variants of Shortest-Path Betweenness Centrality and their Generic Computation.

In a connected graph, the normalized closeness centrality of a node is the average length of the shortest path between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes.

var centrality = require('ngraph.centrality');
var g = createGraph();
g.addLink(1, 2);
g.addLink(2, 3);

var closeness = centrality.closeness(g);

// closeness is: 
// { 
//   '1': 0.6666666666666666,
//   '2': 1,
//   '3': 0.6666666666666666
// }

The eccentricity centrality of a node is the greatest distance between that node and any other node in the network. It can be thought of as how far a node is from the node most distant from it in the graph.

var centrality = require('ngraph.centrality');
var g = createGraph();
g.addLink(1, 2);
g.addLink(2, 3);

var eccentricity = centrality.eccentricity(g);

// eccentricity is: 
// { 
//   '1': 2,
//   '2': 1,
//   '3': 2
// }

Since the graph's diameter equals maximum eccentricity, we can easily calculate this using the returned object:

var eccentricityValues = Object.keys(eccentricity).map(function(key) {return eccentricity[key]});
var diameter = Math.max.apply(null, eccentricityValues);
// Returns 2

install

With npm do:

npm install ngraph.centrality

license

MIT

todo

It would be nice to have asynchronous version for each centrality calculator.

About

Module to calculate graph centrality metrics

Resources

License

Stars

Watchers

Forks

Packages

No packages published