-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompare_frames.py
135 lines (109 loc) · 5.25 KB
/
compare_frames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Compare the original frame (1280x720) with the adjusted frame (997x720) at a specific time in the event recording
# Event date: https://tumevent-vi.vision.in.tum.de/running-easy/running-easy-events_right.h5
import numpy as np
import matplotlib.pyplot as plt
import hdf5plugin
import h5py
from torch.utils.data import Dataset
import torch
class EventDataset(Dataset):
def __init__(self, file_path, height=720, width=1280, chunk_size=100000,
max_events=None, start_time=None, end_time=None, device=torch.device('cpu')):
self.file_path = file_path
self.height = height
self.width = width
self.chunk_size = chunk_size
self.max_events = max_events
self.start_time = start_time
self.end_time = end_time
self.cached_events = None # Cache to store events
self.device = device
# Calculate aspect ratio based on FoV
fov_horizontal = 90 # degrees
fov_vertical = 65 # degrees
self.aspect_ratio = fov_horizontal / fov_vertical
# Determine new dimensions based on aspect ratio
self.new_width = round(self.height * self.aspect_ratio)
self.new_height = self.height
print(f"New dimensions of main frame: width {self.new_width}, height {self.new_height}")
def load_events_in_chunks(self):
if self.cached_events is None:
print("Loading events from file...")
events_list = []
with h5py.File(self.file_path, 'r') as f:
if 'events' in f and all(key in f['events'] for key in ['x', 'y', 'p', 't']):
total_events = f['events']['x'].shape[0]
total_to_load = min(total_events, self.max_events) if self.max_events else total_events
for start in range(0, total_to_load, self.chunk_size):
end = min(start + self.chunk_size, total_to_load)
x = f['events']['x'][start:end]
y = f['events']['y'][start:end]
p = f['events']['p'][start:end]
t = f['events']['t'][start:end]
# Filter events by start_time and end_time
if self.start_time is not None:
start_idx = np.searchsorted(t, self.start_time, side='left')
else:
start_idx = 0
if self.end_time is not None:
end_idx = np.searchsorted(t, self.end_time, side='right')
else:
end_idx = len(t)
events = np.column_stack(
(x[start_idx:end_idx], y[start_idx:end_idx], p[start_idx:end_idx], t[start_idx:end_idx]))
events_list.append(events)
self.cached_events = np.concatenate(events_list, axis=0)
else:
print("Using cached events...")
return self.cached_events
def adjust_coordinates(self, events):
# Calculate scaling factors
scale_x = self.new_width / self.width
scale_y = self.new_height / self.height
# Adjust the coordinates based on scaling factors and round to nearest integers
adjusted_x = np.round(events[:, 0] * scale_x).astype(int)
adjusted_y = np.round(events[:, 1] * scale_y).astype(int)
return adjusted_x, adjusted_y
# Load the dataset and filter events between 25 and 25.01 seconds
file_path = 'data/running-easy-events_right.h5'
start_time = 26000 # 26 seconds in milliseconds
end_time = 27000 # 27 seconds in milliseconds
# Initialize the dataset
dataset = EventDataset(file_path, start_time=start_time, end_time=end_time)
# Load and filter events
events = dataset.load_events_in_chunks()
# Debug: Check if filtered events are empty
print(f"Number of filtered events: {len(events)}")
if len(events) == 0:
print("No events found in the specified time range.")
# Adjust coordinates of filtered events
adjusted_x, adjusted_y = dataset.adjust_coordinates(events)
# Separate the events based on polarity
on_events = events[events[:, 2] == 1]
off_events = events[events[:, 2] == 0]
adjusted_on_x, adjusted_on_y = dataset.adjust_coordinates(on_events)
adjusted_off_x, adjusted_off_y = dataset.adjust_coordinates(off_events)
# Plot original vs adjusted coordinates for the filtered events
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.scatter(on_events[:, 0], on_events[:, 1], s=2, c='r', label='ON events', alpha=0.6)
plt.scatter(off_events[:, 0], off_events[:, 1], s=2, c='b', label='OFF events', alpha=0.6)
plt.title('Original Event Coordinates from 26s to 27s')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(0, dataset.width)
plt.ylim(0, dataset.height)
plt.legend()
plt.gca().set_aspect('equal', adjustable='box') # Keep aspect ratio equal
plt.subplot(1, 2, 2)
plt.scatter(adjusted_on_x, adjusted_on_y, s=2, c='r', label='ON events', alpha=0.6)
plt.scatter(adjusted_off_x, adjusted_off_y, s=2, c='b', label='OFF events', alpha=0.6)
plt.title('Adjusted Event Coordinates from 26s to 27s')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(0, dataset.new_width)
plt.ylim(0, dataset.new_height)
plt.legend()
plt.gca().set_aspect('equal', adjustable='box') # Keep aspect ratio equal
plt.tight_layout()
plt.show()