-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search.py
408 lines (330 loc) · 16.6 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import torch
import torch.nn as nn
from sklearn.model_selection import ParameterGrid
from spikingjelly.activation_based import neuron, layer, learning, functional
from spikingjelly.activation_based.base import MemoryModule
import random
from torch.utils.data import Dataset, DataLoader
import numpy as np
import hdf5plugin
import h5py
def set_seed(seed):
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class EventDataset(Dataset):
def __init__(self, file_path, height=720, width=1280, chunk_size=100000,
max_events=None, temporal_window=1e3, delay=30e3, start_time=None, end_time=None, device=torch.device('cpu')):
self.file_path = file_path
self.height = height
self.width = width
self.chunk_size = chunk_size
self.max_events = max_events
self.temporal_window = temporal_window
self.delay = delay
self.start_time = start_time
self.end_time = end_time
self.cached_events = None # Cache to store events
self.device = device
# Calculate aspect ratio based on FoV
fov_horizontal = 90 # degrees
fov_vertical = 65 # degrees
self.aspect_ratio = fov_horizontal / fov_vertical
# Determine new dimensions based on aspect ratio
self.new_width = round(self.height * self.aspect_ratio)
self.new_height = self.height
# print(f"New dimensions of main frame: width {self.new_width}, height {self.new_height}")
# Calculate the size of 1° of visual angle in pixels
pixels_per_degree_horizontal = self.new_width / fov_horizontal
pixels_per_degree_vertical = self.new_height / fov_vertical
# Set the receptive field size to cover 1 degree in both dimensions
self.rf_size = int(min(pixels_per_degree_horizontal, pixels_per_degree_vertical))
# print(f"Size of receptive field (pixels per degree): {self.rf_size}")
# Center coordinates for the receptive field
self.center_x = self.new_width // 2
self.center_y = self.new_height // 2
# Define offsets for 9 receptive fields
self.rf_offsets = [
(-1, -1), (0, -1), (1, -1),
(-1, 0), (0, 0), (1, 0),
(-1, 1), (0, 1), (1, 1)
]
def load_events_in_chunks(self):
if self.cached_events is None:
print("Loading events from file...")
events_list = []
with h5py.File(self.file_path, 'r') as f:
if 'events' in f and all(key in f['events'] for key in ['x', 'y', 'p', 't']):
total_events = f['events']['x'].shape[0]
total_to_load = min(total_events, self.max_events) if self.max_events else total_events
for start in range(0, total_to_load, self.chunk_size):
end = min(start + self.chunk_size, total_to_load)
x = f['events']['x'][start:end]
y = f['events']['y'][start:end]
p = f['events']['p'][start:end]
t = f['events']['t'][start:end]
# Filter events by start_time and end_time
if self.start_time is not None:
start_idx = np.searchsorted(t, self.start_time, side='left')
else:
start_idx = 0
if self.end_time is not None:
end_idx = np.searchsorted(t, self.end_time, side='right')
else:
end_idx = len(t)
events = np.column_stack(
(x[start_idx:end_idx], y[start_idx:end_idx], p[start_idx:end_idx], t[start_idx:end_idx]))
events_list.append(events)
self.cached_events = np.concatenate(events_list, axis=0)
else:
print("Using cached events...")
yield self.cached_events
def preprocess_events(self, events):
combined_on_frames = []
combined_off_frames = []
# Calculate scaling factors
scale_x = self.new_width / self.width
scale_y = self.new_height / self.height
# Adjust the coordinates based on scaling factors and round to nearest integers
events[:, 0] = np.round(events[:, 0] * scale_x).astype(int)
events[:, 1] = np.round(events[:, 1] * scale_y).astype(int)
# Ensure events are within bounds of the entire frame
events[:, 0] = np.clip(events[:, 0], 0, self.new_width - 1)
events[:, 1] = np.clip(events[:, 1], 0, self.new_height - 1)
# Precompute indices
rf_indices = []
for dx, dy in self.rf_offsets:
x_min = self.center_x - (self.rf_size // 2) + dx * self.rf_size
x_max = x_min + self.rf_size
y_min = self.center_y - (self.rf_size // 2) + dy * self.rf_size
y_max = y_min + self.rf_size
rf_indices.append((x_min, x_max, y_min, y_max))
for i, (x_min, x_max, y_min, y_max) in enumerate(rf_indices):
on_frame = np.zeros((self.rf_size, self.rf_size), dtype=np.float32)
off_frame = np.zeros((self.rf_size, self.rf_size), dtype=np.float32)
for event in events:
x, y, polarity, timestamp = int(event[0]), int(event[1]), int(event[2]), event[3]
if x_min <= x < x_max and y_min <= y < y_max:
x_rf = x - x_min
y_rf = y - y_min
if polarity == 1:
on_frame[y_rf, x_rf] = 1
else:
off_frame[y_rf, x_rf] = 1
combined_on_frames.append(on_frame)
combined_off_frames.append(off_frame)
return np.array(combined_on_frames), np.array(combined_off_frames)
def create_frames_generator(self):
events_gen = self.load_events_in_chunks()
current_events = next(events_gen)
timestamps = current_events[:, 3]
min_time, max_time = timestamps.min(), timestamps.max()
current_time = min_time
delayed_events = np.empty((0, 4))
while True:
while (timestamps < current_time + self.temporal_window).any():
try:
new_events = next(events_gen)
current_events = np.concatenate((current_events, new_events), axis=0)
timestamps = current_events[:, 3]
except StopIteration:
break
mask = (timestamps >= current_time) & (timestamps < current_time + self.temporal_window)
delayed_mask = (timestamps >= current_time - self.delay) & (
timestamps < current_time - self.delay + self.temporal_window)
frame_events = current_events[mask]
delayed_frame_events = delayed_events[(delayed_events[:, 3] >= current_time - self.delay) & (
delayed_events[:, 3] < current_time - self.delay + self.temporal_window)]
current_frames_on, current_frames_off = self.preprocess_events(frame_events)
delayed_frames_on, delayed_frames_off = self.preprocess_events(delayed_frame_events)
frames = np.stack([current_frames_on, current_frames_off, delayed_frames_on, delayed_frames_off], axis=1)
frames = torch.tensor(frames, dtype=torch.float32).to(self.device) # Move frames to the specified device
yield frames
delayed_events = np.concatenate((delayed_events, current_events[mask]), axis=0)
delayed_events = delayed_events[delayed_events[:, 3] >= current_time - self.delay]
current_events = current_events[~mask]
timestamps = current_events[:, 3]
current_time += self.temporal_window
if current_time > max_time and current_events.size == 0:
break
def __len__(self):
return 1000000 # Placeholder
def __getitem__(self, idx):
raise NotImplementedError("Use create_frames_generator() to iterate through the dataset.")
class LateralInhibitionLIFNode(neuron.LIFNode):
def __init__(self, tau, v_threshold, v_reset, inhibition_strength):
super().__init__(tau=tau, v_threshold=v_threshold, v_reset=v_reset)
self.inhibition_strength = inhibition_strength
self.inhibited_neurons_mask = None
self.previous_v = None
def forward(self, x):
batch_size = x.size(0)
# Ensure self.v is a tensor
if not isinstance(self.v, torch.Tensor):
self.v = torch.zeros(x.size(0), x.size(1)).to(x.device)
# Initialize previous_v if it's the first call and self.v is already a tensor
if self.previous_v is None or self.previous_v.shape != self.v.shape:
self.previous_v = torch.zeros_like(self.v).to(x.device)
current_spikes = super().forward(x) # Get current spikes from LIF dynamics
for b in range(batch_size):
if torch.any(current_spikes[b] > 0):
spiked_neurons = torch.where(current_spikes[b] > 0)[0]
if len(spiked_neurons) > 1:
max_potentials = self.previous_v[b, spiked_neurons]
max_potential_indices = (max_potentials == torch.max(max_potentials)).nonzero(as_tuple=True)[0]
if len(max_potential_indices) > 1:
winner_idx = spiked_neurons[
max_potential_indices[torch.randint(len(max_potential_indices), (1,))]].item()
else:
winner_idx = spiked_neurons[max_potential_indices[0]].item()
else:
winner_idx = spiked_neurons[0].item()
inhibited_neurons_mask = torch.ones_like(current_spikes[b], dtype=torch.bool)
inhibited_neurons_mask[winner_idx] = False
self.v[b, inhibited_neurons_mask] = self.inhibition_strength
self.previous_v = self.v.clone()
return current_spikes
def reset(self):
super().reset()
self.inhibited_neurons_mask = None
self.previous_v = None
def enable_inhibition(self):
self.inhibition_enabled = True
def disable_inhibition(self):
self.inhibition_enabled = False
class SNN(MemoryModule):
def __init__(self, input_shape, device, tau, v_threshold, v_reset, inhibition_strength):
super(SNN, self).__init__()
self.flatten = nn.Flatten()
input_size = input_shape[1] * input_shape[2] * input_shape[3] # Correct input size calculation
self.fc = nn.Linear(input_size, 4, bias=False) # Ensure the input size matches here
self.lif_neurons = LateralInhibitionLIFNode(
tau=tau, v_threshold=v_threshold, v_reset=v_reset, inhibition_strength=inhibition_strength
)
self.to(device)
def forward(self, x):
x = self.flatten(x)
x = self.fc(x)
x = self.lif_neurons(x)
return x
def reset(self):
super().reset() # Reset inherited from MemoryModule
self.lif_neurons.reset()
# Define the evaluation function
def evaluate_pattern_matching(params, file_path, device):
input_shape = (9, 4, 11, 11)
net = SNN(
input_shape, device=device,
tau=params['tau'], v_threshold=params['v_threshold'],
v_reset=params['v_reset'], inhibition_strength=params['inhibition_strength']
)
net.lif_neurons.enable_inhibition()
nn.init.uniform_(net.fc.weight.data, 0.001, 0.1)
optimizer = torch.optim.Adam(net.parameters(), lr=params['learning_rate'])
max_w = params['max_w']
learner = learning.STDPLearner(
step_mode='s', synapse=net.fc, sn=net.lif_neurons,
tau_pre=params['tau_pre'], tau_post=params['tau_post'],
f_pre=lambda x: torch.clamp(x, 0.0, max_w), f_post=lambda x: torch.clamp(x, 0.0, max_w),
)
dataset = EventDataset(
file_path, max_events=None, temporal_window=10e3, delay=20e3,
start_time=25e6, end_time=26e6, device=device
)
data_loader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=4, pin_memory=True)
for epoch in range(params['epochs']):
net.train()
optimizer.zero_grad()
frame_gen = dataset.create_frames_generator()
for idx, combined_input in enumerate(frame_gen):
combined_input = combined_input.to(device, non_blocking=True)
output = net(combined_input)
learner.step(on_grad=True)
optimizer.step()
net.fc.weight.data.clamp_(0.0, max_w)
del combined_input
torch.cuda.empty_cache()
net.reset()
functional.reset_net(net)
learner.reset()
# Extract weights after training
weight_data = net.fc.weight.data.cpu().numpy()
pattern_score = check_for_motion_patterns(weight_data)
return pattern_score
def check_for_motion_patterns(weights, rf_size=11):
"""
Check the learned weights for patterns corresponding to different motion directions.
Args:
weights (np.ndarray): Weight matrix for each neuron, shape (num_neurons, input_size).
rf_size (int): Size of the receptive field.
Returns:
float: Combined diversity and selectivity score.
"""
num_neurons, input_size = weights.shape
num_channels = 4 # Expected number of channels: ON, OFF, delayed ON, delayed OFF
assert input_size == num_channels * rf_size * rf_size, "Unexpected input size"
direction_counts = {'left': 0, 'right': 0, 'up': 0, 'down': 0}
total_score = 0
for neuron_idx in range(num_neurons):
neuron_weights = weights[neuron_idx]
if neuron_weights.ndim != 1:
raise ValueError(f"Expected 1D array for neuron_weights, got {neuron_weights.ndim}D array instead.")
# Reshape the weights from 1D to 3D (channels, height, width)
neuron_weights = neuron_weights.reshape(num_channels, rf_size, rf_size)
for channel_idx in range(num_channels):
channel_weights = neuron_weights[channel_idx]
if channel_weights.ndim != 2:
print(f"Unexpected dimension for channel_weights: {channel_weights.ndim}. Data: {channel_weights}")
raise ValueError(f"Expected 2D array for channel_weights, got {channel_weights.ndim}D array instead.")
# print(f"Channel {channel_idx} weights shape: {channel_weights.shape}")
left_side = channel_weights[:, :rf_size // 3]
right_side = channel_weights[:, -rf_size // 3:]
top_side = channel_weights[:rf_size // 3, :]
bottom_side = channel_weights[-rf_size // 3:, :]
neuron_direction_scores = {
'left': np.sum(right_side) - np.sum(left_side),
'right': np.sum(left_side) - np.sum(right_side),
'up': np.sum(bottom_side) - np.sum(top_side),
'down': np.sum(top_side) - np.sum(bottom_side)
}
# Determine the direction with the highest score for this neuron and channel
preferred_direction = max(neuron_direction_scores, key=neuron_direction_scores.get)
if neuron_direction_scores[preferred_direction] > 0:
direction_counts[preferred_direction] += 1
total_score += neuron_direction_scores[preferred_direction]
# Diversity penalty: Penalize if any one direction dominates
diversity_penalty = sum(max(count - num_neurons / 4, 0) for count in direction_counts.values())
total_score -= diversity_penalty
return total_score
if __name__ == '__main__':
# Define the parameter grid
param_grid = {
'tau': [5.0, 10.0, 20.0],
'v_threshold': [5.0, 10.0, 20.0],
'v_reset': [0.0, -5.0],
'inhibition_strength': [-5.0, -10.0, -20.0],
'learning_rate': [0.0001, 0.001, 0.01],
'tau_pre': [5.0, 10.0, 15.0],
'tau_post': [5.0, 10.0, 15.0],
'max_w': [0.3, 0.5],
'epochs': [1, 3]
}
file_path = 'data/running-easy-events_right.h5'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
# Grid search loop
best_score = float('-inf')
best_params = None
seed = 8
for params in ParameterGrid(param_grid):
set_seed(seed)
pattern_score = evaluate_pattern_matching(params, file_path, device)
print(f"Params: {params}, Pattern Score: {pattern_score}")
if pattern_score > best_score:
best_score = pattern_score
best_params = params
print(f"Best Params: {best_params}, Best Pattern Score: {best_score}")