-
Notifications
You must be signed in to change notification settings - Fork 13.5k
/
Copy pathudf.py
852 lines (695 loc) · 33.3 KB
/
udf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import abc
import functools
import inspect
from typing import Union, List, Type, Callable, TypeVar, Generic, Iterable
from pyflink.java_gateway import get_gateway
from pyflink.metrics import MetricGroup
from pyflink.table import Expression
from pyflink.table.types import DataType, _to_java_data_type
from pyflink.util import java_utils
__all__ = ['FunctionContext', 'AggregateFunction', 'ScalarFunction', 'TableFunction',
'TableAggregateFunction', 'udf', 'udtf', 'udaf', 'udtaf']
class FunctionContext(object):
"""
Used to obtain global runtime information about the context in which the
user-defined function is executed. The information includes the metric group,
and global job parameters, etc.
"""
def __init__(self, base_metric_group, job_parameters):
self._base_metric_group = base_metric_group
self._job_parameters = job_parameters
def get_metric_group(self) -> MetricGroup:
"""
Returns the metric group for this parallel subtask.
.. versionadded:: 1.11.0
"""
if self._base_metric_group is None:
raise RuntimeError("Metric has not been enabled. You can enable "
"metric with the 'python.metric.enabled' configuration.")
return self._base_metric_group
def get_job_parameter(self, key: str, default_value: str) -> str:
"""
Gets the global job parameter value associated with the given key as a string.
:param key: The key pointing to the associated value.
:param default_value: The default value which is returned in case global job parameter is
null or there is no value associated with the given key.
.. versionadded:: 1.17.0
"""
return self._job_parameters[key] if key in self._job_parameters else default_value
class UserDefinedFunction(abc.ABC):
"""
Base interface for user-defined function.
.. versionadded:: 1.10.0
"""
def open(self, function_context: FunctionContext):
"""
Initialization method for the function. It is called before the actual working methods
and thus suitable for one time setup work.
:param function_context: the context of the function
:type function_context: FunctionContext
"""
pass
def close(self):
"""
Tear-down method for the user code. It is called after the last call to the main
working methods.
"""
pass
def is_deterministic(self) -> bool:
"""
Returns information about the determinism of the function's results.
It returns true if and only if a call to this function is guaranteed to
always return the same result given the same parameters. true is assumed by default.
If the function is not pure functional like random(), date(), now(),
this method must return false.
:return: the determinism of the function's results.
"""
return True
class ScalarFunction(UserDefinedFunction):
"""
Base interface for user-defined scalar function. A user-defined scalar functions maps zero, one,
or multiple scalar values to a new scalar value.
.. versionadded:: 1.10.0
"""
@abc.abstractmethod
def eval(self, *args):
"""
Method which defines the logic of the scalar function.
"""
pass
class TableFunction(UserDefinedFunction):
"""
Base interface for user-defined table function. A user-defined table function creates zero, one,
or multiple rows to a new row value.
.. versionadded:: 1.11.0
"""
@abc.abstractmethod
def eval(self, *args):
"""
Method which defines the logic of the table function.
"""
pass
T = TypeVar('T')
ACC = TypeVar('ACC')
class ImperativeAggregateFunction(UserDefinedFunction, Generic[T, ACC]):
"""
Base interface for user-defined aggregate function and table aggregate function.
This class is used for unified handling of imperative aggregating functions. Concrete
implementations should extend from :class:`~pyflink.table.AggregateFunction` or
:class:`~pyflink.table.TableAggregateFunction`.
.. versionadded:: 1.13.0
"""
@abc.abstractmethod
def create_accumulator(self) -> ACC:
"""
Creates and initializes the accumulator for this AggregateFunction.
:return: the accumulator with the initial value
"""
pass
@abc.abstractmethod
def accumulate(self, accumulator: ACC, *args):
"""
Processes the input values and updates the provided accumulator instance.
:param accumulator: the accumulator which contains the current aggregated results
:param args: the input value (usually obtained from new arrived data)
"""
pass
def retract(self, accumulator: ACC, *args):
"""
Retracts the input values from the accumulator instance.The current design assumes the
inputs are the values that have been previously accumulated.
:param accumulator: the accumulator which contains the current aggregated results
:param args: the input value (usually obtained from new arrived data).
"""
raise RuntimeError("Method retract is not implemented")
def merge(self, accumulator: ACC, accumulators):
"""
Merges a group of accumulator instances into one accumulator instance. This method must be
implemented for unbounded session window grouping aggregates and bounded grouping
aggregates.
:param accumulator: the accumulator which will keep the merged aggregate results. It should
be noted that the accumulator may contain the previous aggregated
results. Therefore user should not replace or clean this instance in the
custom merge method.
:param accumulators: a group of accumulators that will be merged.
"""
raise RuntimeError("Method merge is not implemented")
def get_result_type(self) -> Union[DataType, str]:
"""
Returns the DataType of the AggregateFunction's result.
:return: The :class:`~pyflink.table.types.DataType` of the AggregateFunction's result.
"""
raise RuntimeError("Method get_result_type is not implemented")
def get_accumulator_type(self) -> Union[DataType, str]:
"""
Returns the DataType of the AggregateFunction's accumulator.
:return: The :class:`~pyflink.table.types.DataType` of the AggregateFunction's accumulator.
"""
raise RuntimeError("Method get_accumulator_type is not implemented")
class AggregateFunction(ImperativeAggregateFunction):
"""
Base interface for user-defined aggregate function. A user-defined aggregate function maps
scalar values of multiple rows to a new scalar value.
.. versionadded:: 1.12.0
"""
@abc.abstractmethod
def get_value(self, accumulator: ACC) -> T: # type: ignore[type-var]
"""
Called every time when an aggregation result should be materialized. The returned value
could be either an early and incomplete result (periodically emitted as data arrives) or
the final result of the aggregation.
:param accumulator: the accumulator which contains the current intermediate results
:return: the aggregation result
"""
pass
class TableAggregateFunction(ImperativeAggregateFunction):
"""
Base class for a user-defined table aggregate function. A user-defined table aggregate function
maps scalar values of multiple rows to zero, one, or multiple rows (or structured types). If an
output record consists of only one field, the structured record can be omitted, and a scalar
value can be emitted that will be implicitly wrapped into a row by the runtime.
.. versionadded:: 1.13.0
"""
@abc.abstractmethod
def emit_value(self, accumulator: ACC) -> Iterable[T]:
"""
Called every time when an aggregation result should be materialized. The returned value
could be either an early and incomplete result (periodically emitted as data arrives) or the
final result of the aggregation.
:param accumulator: the accumulator which contains the current aggregated results.
:return: multiple aggregated result
"""
pass
class DelegatingScalarFunction(ScalarFunction):
"""
Helper scalar function implementation for lambda expression and python function. It's for
internal use only.
"""
def __init__(self, func):
self.func = func
def eval(self, *args):
return self.func(*args)
class DelegationTableFunction(TableFunction):
"""
Helper table function implementation for lambda expression and python function. It's for
internal use only.
"""
def __init__(self, func):
self.func = func
def eval(self, *args):
return self.func(*args)
class DelegatingPandasAggregateFunction(AggregateFunction):
"""
Helper pandas aggregate function implementation for lambda expression and python function.
It's for internal use only.
"""
def __init__(self, func):
self.func = func
def get_value(self, accumulator):
return accumulator[0]
def create_accumulator(self):
return []
def accumulate(self, accumulator, *args):
accumulator.append(self.func(*args))
class PandasAggregateFunctionWrapper(object):
"""
Wrapper for Pandas Aggregate function.
"""
def __init__(self, func: AggregateFunction):
self.func = func
def open(self, function_context: FunctionContext):
self.func.open(function_context)
def eval(self, *args):
accumulator = self.func.create_accumulator()
self.func.accumulate(accumulator, *args)
return self.func.get_value(accumulator)
def close(self):
self.func.close()
class UserDefinedFunctionWrapper(object):
"""
Base Wrapper for Python user-defined function. It handles things like converting lambda
functions to user-defined functions, creating the Java user-defined function representation,
etc. It's for internal use only.
"""
def __init__(self, func, input_types, func_type, deterministic=None, name=None):
if inspect.isclass(func) or (
not isinstance(func, UserDefinedFunction) and not callable(func)):
raise TypeError(
"Invalid function: not a function or callable (__call__ is not defined): {0}"
.format(type(func)))
if input_types is not None:
from pyflink.table.types import RowType
if isinstance(input_types, RowType):
input_types = input_types.field_types()
elif isinstance(input_types, (DataType, str)):
input_types = [input_types]
else:
input_types = list(input_types)
for input_type in input_types:
if not isinstance(input_type, (DataType, str)):
raise TypeError(
"Invalid input_type: input_type should be DataType or str but contains {}"
.format(input_type))
self._func = func
self._input_types = input_types
self._name = name or (
func.__name__ if hasattr(func, '__name__') else func.__class__.__name__)
if deterministic is not None and isinstance(func, UserDefinedFunction) and deterministic \
!= func.is_deterministic():
raise ValueError("Inconsistent deterministic: {} and {}".format(
deterministic, func.is_deterministic()))
# default deterministic is True
self._deterministic = deterministic if deterministic is not None else (
func.is_deterministic() if isinstance(func, UserDefinedFunction) else True)
self._func_type = func_type
self._judf_placeholder = None
self._takes_row_as_input = False
def __call__(self, *args) -> Expression:
from pyflink.table import expressions as expr
return expr.call(self, *args)
def alias(self, *alias_names: str):
self._alias_names = alias_names
return self
def _set_takes_row_as_input(self):
self._takes_row_as_input = True
return self
def _java_user_defined_function(self):
if self._judf_placeholder is None:
gateway = get_gateway()
def get_python_function_kind():
JPythonFunctionKind = gateway.jvm.org.apache.flink.table.functions.python. \
PythonFunctionKind
if self._func_type == "general":
return JPythonFunctionKind.GENERAL
elif self._func_type == "pandas":
return JPythonFunctionKind.PANDAS
else:
raise TypeError("Unsupported func_type: %s." % self._func_type)
if self._input_types is not None:
if isinstance(self._input_types[0], str):
j_input_types = java_utils.to_jarray(gateway.jvm.String, self._input_types)
else:
j_input_types = java_utils.to_jarray(
gateway.jvm.DataType, [_to_java_data_type(i) for i in self._input_types])
else:
j_input_types = None
j_function_kind = get_python_function_kind()
func = self._func
if not isinstance(self._func, UserDefinedFunction):
func = self._create_delegate_function()
import cloudpickle
serialized_func = cloudpickle.dumps(func)
self._judf_placeholder = \
self._create_judf(serialized_func, j_input_types, j_function_kind)
return self._judf_placeholder
def _create_delegate_function(self) -> UserDefinedFunction:
pass
def _create_judf(self, serialized_func, j_input_types, j_function_kind):
pass
class UserDefinedScalarFunctionWrapper(UserDefinedFunctionWrapper):
"""
Wrapper for Python user-defined scalar function.
"""
def __init__(self, func, input_types, result_type, func_type, deterministic, name):
super(UserDefinedScalarFunctionWrapper, self).__init__(
func, input_types, func_type, deterministic, name)
if not isinstance(result_type, (DataType, str)):
raise TypeError(
"Invalid returnType: returnType should be DataType or str but is {}".format(
result_type))
self._result_type = result_type
self._judf_placeholder = None
def _create_judf(self, serialized_func, j_input_types, j_function_kind):
gateway = get_gateway()
if isinstance(self._result_type, DataType):
j_result_type = _to_java_data_type(self._result_type)
else:
j_result_type = self._result_type
PythonScalarFunction = gateway.jvm \
.org.apache.flink.table.functions.python.PythonScalarFunction
j_scalar_function = PythonScalarFunction(
self._name,
bytearray(serialized_func),
j_input_types,
j_result_type,
j_function_kind,
self._deterministic,
self._takes_row_as_input,
_get_python_env())
return j_scalar_function
def _create_delegate_function(self) -> UserDefinedFunction:
return DelegatingScalarFunction(self._func)
class UserDefinedTableFunctionWrapper(UserDefinedFunctionWrapper):
"""
Wrapper for Python user-defined table function.
"""
def __init__(self, func, input_types, result_types, deterministic=None, name=None):
super(UserDefinedTableFunctionWrapper, self).__init__(
func, input_types, "general", deterministic, name)
from pyflink.table.types import RowType
if isinstance(result_types, RowType):
# DataTypes.ROW([DataTypes.FIELD("f0", DataTypes.INT()),
# DataTypes.FIELD("f1", DataTypes.BIGINT())])
result_types = result_types.field_types()
elif isinstance(result_types, str):
# ROW<f0 INT, f1 BIGINT>
result_types = result_types
elif isinstance(result_types, DataType):
# DataTypes.INT()
result_types = [result_types]
else:
# [DataTypes.INT(), DataTypes.BIGINT()]
result_types = list(result_types)
for result_type in result_types:
if not isinstance(result_type, (DataType, str)):
raise TypeError(
"Invalid result_type: result_type should be DataType or str but contains {}"
.format(result_type))
self._result_types = result_types
def _create_judf(self, serialized_func, j_input_types, j_function_kind):
gateway = get_gateway()
if isinstance(self._result_types, str):
j_result_type = self._result_types
elif isinstance(self._result_types[0], DataType):
j_result_types = java_utils.to_jarray(
gateway.jvm.DataType, [_to_java_data_type(i) for i in self._result_types])
j_result_type = gateway.jvm.DataTypes.ROW(j_result_types)
else:
j_result_type = 'Row<{0}>'.format(','.join(
['f{0} {1}'.format(i, result_type)
for i, result_type in enumerate(self._result_types)]))
PythonTableFunction = gateway.jvm \
.org.apache.flink.table.functions.python.PythonTableFunction
j_table_function = PythonTableFunction(
self._name,
bytearray(serialized_func),
j_input_types,
j_result_type,
j_function_kind,
self._deterministic,
self._takes_row_as_input,
_get_python_env())
return j_table_function
def _create_delegate_function(self) -> UserDefinedFunction:
return DelegationTableFunction(self._func)
class UserDefinedAggregateFunctionWrapper(UserDefinedFunctionWrapper):
"""
Wrapper for Python user-defined aggregate function or user-defined table aggregate function.
"""
def __init__(self, func, input_types, result_type, accumulator_type, func_type,
deterministic, name, is_table_aggregate=False):
super(UserDefinedAggregateFunctionWrapper, self).__init__(
func, input_types, func_type, deterministic, name)
if accumulator_type is None and func_type == "general":
accumulator_type = func.get_accumulator_type()
if result_type is None:
result_type = func.get_result_type()
if not isinstance(result_type, (DataType, str)):
raise TypeError(
"Invalid returnType: returnType should be DataType or str but is {}"
.format(result_type))
from pyflink.table.types import MapType
if func_type == 'pandas' and isinstance(result_type, MapType):
raise TypeError(
"Invalid returnType: Pandas UDAF doesn't support DataType type {} currently"
.format(result_type))
if accumulator_type is not None and not isinstance(accumulator_type, (DataType, str)):
raise TypeError(
"Invalid accumulator_type: accumulator_type should be DataType or str but is {}"
.format(accumulator_type))
if (func_type == "general" and
not (isinstance(result_type, str) and (accumulator_type, str) or
isinstance(result_type, DataType) and isinstance(accumulator_type, DataType))):
raise TypeError("result_type and accumulator_type should be DataType or str "
"at the same time.")
self._result_type = result_type
self._accumulator_type = accumulator_type
self._is_table_aggregate = is_table_aggregate
def _create_judf(self, serialized_func, j_input_types, j_function_kind):
if self._func_type == "pandas":
if isinstance(self._result_type, DataType):
from pyflink.table.types import DataTypes
self._accumulator_type = DataTypes.ARRAY(self._result_type)
else:
self._accumulator_type = 'ARRAY<{0}>'.format(self._result_type)
if j_input_types is not None:
gateway = get_gateway()
j_input_types = java_utils.to_jarray(
gateway.jvm.DataType, [_to_java_data_type(i) for i in self._input_types])
if isinstance(self._result_type, DataType):
j_result_type = _to_java_data_type(self._result_type)
else:
j_result_type = self._result_type
if isinstance(self._accumulator_type, DataType):
j_accumulator_type = _to_java_data_type(self._accumulator_type)
else:
j_accumulator_type = self._accumulator_type
gateway = get_gateway()
if self._is_table_aggregate:
PythonAggregateFunction = gateway.jvm \
.org.apache.flink.table.functions.python.PythonTableAggregateFunction
else:
PythonAggregateFunction = gateway.jvm \
.org.apache.flink.table.functions.python.PythonAggregateFunction
j_aggregate_function = PythonAggregateFunction(
self._name,
bytearray(serialized_func),
j_input_types,
j_result_type,
j_accumulator_type,
j_function_kind,
self._deterministic,
self._takes_row_as_input,
_get_python_env())
return j_aggregate_function
def _create_delegate_function(self) -> UserDefinedFunction:
assert self._func_type == 'pandas'
return DelegatingPandasAggregateFunction(self._func)
# TODO: support to configure the python execution environment
def _get_python_env():
gateway = get_gateway()
exec_type = gateway.jvm.org.apache.flink.table.functions.python.PythonEnv.ExecType.PROCESS
return gateway.jvm.org.apache.flink.table.functions.python.PythonEnv(exec_type)
def _create_udf(f, input_types, result_type, func_type, deterministic, name):
return UserDefinedScalarFunctionWrapper(
f, input_types, result_type, func_type, deterministic, name)
def _create_udtf(f, input_types, result_types, deterministic, name):
return UserDefinedTableFunctionWrapper(f, input_types, result_types, deterministic, name)
def _create_udaf(f, input_types, result_type, accumulator_type, func_type, deterministic, name):
return UserDefinedAggregateFunctionWrapper(
f, input_types, result_type, accumulator_type, func_type, deterministic, name)
def _create_udtaf(f, input_types, result_type, accumulator_type, func_type, deterministic, name):
return UserDefinedAggregateFunctionWrapper(
f, input_types, result_type, accumulator_type, func_type, deterministic, name, True)
def udf(f: Union[Callable, ScalarFunction, Type] = None,
input_types: Union[List[DataType], DataType, str, List[str]] = None,
result_type: Union[DataType, str] = None,
deterministic: bool = None, name: str = None, func_type: str = "general"
) -> Union[UserDefinedScalarFunctionWrapper, Callable]:
"""
Helper method for creating a user-defined function.
Example:
::
>>> add_one = udf(lambda i: i + 1, DataTypes.BIGINT(), DataTypes.BIGINT())
>>> # The input_types is optional.
>>> @udf(result_type=DataTypes.BIGINT())
... def add(i, j):
... return i + j
>>> # Specify result_type via string.
>>> @udf(result_type='BIGINT')
... def add(i, j):
... return i + j
>>> class SubtractOne(ScalarFunction):
... def eval(self, i):
... return i - 1
>>> subtract_one = udf(SubtractOne(), DataTypes.BIGINT(), DataTypes.BIGINT())
:param f: lambda function or user-defined function.
:param input_types: optional, the input data types.
:param result_type: the result data type.
:param deterministic: the determinism of the function's results. True if and only if a call to
this function is guaranteed to always return the same result given the
same parameters. (default True)
:param name: the function name.
:param func_type: the type of the python function, available value: general, pandas,
(default: general)
:param udf_type: the type of the python function, available value: general, pandas,
(default: general)
:return: UserDefinedScalarFunctionWrapper or function.
.. versionadded:: 1.10.0
"""
if func_type not in ('general', 'pandas'):
raise ValueError("The func_type must be one of 'general, pandas', got %s."
% func_type)
# decorator
if f is None:
return functools.partial(_create_udf, input_types=input_types, result_type=result_type,
func_type=func_type, deterministic=deterministic,
name=name)
else:
return _create_udf(f, input_types, result_type, func_type, deterministic, name)
def udtf(f: Union[Callable, TableFunction, Type] = None,
input_types: Union[List[DataType], DataType, str, List[str]] = None,
result_types: Union[List[DataType], DataType, str, List[str]] = None,
deterministic: bool = None,
name: str = None) -> Union[UserDefinedTableFunctionWrapper, Callable]:
"""
Helper method for creating a user-defined table function.
Example:
::
>>> # The input_types is optional.
>>> @udtf(result_types=[DataTypes.BIGINT(), DataTypes.BIGINT()])
... def range_emit(s, e):
... for i in range(e):
... yield s, i
>>> # Specify result_types via string
>>> @udtf(result_types=['BIGINT', 'BIGINT'])
... def range_emit(s, e):
... for i in range(e):
... yield s, i
>>> # Specify result_types via row string
>>> @udtf(result_types='Row<a BIGINT, b BIGINT>')
... def range_emit(s, e):
... for i in range(e):
... yield s, i
>>> class MultiEmit(TableFunction):
... def eval(self, i):
... return range(i)
>>> multi_emit = udtf(MultiEmit(), DataTypes.BIGINT(), DataTypes.BIGINT())
:param f: user-defined table function.
:param input_types: optional, the input data types.
:param result_types: the result data types.
:param name: the function name.
:param deterministic: the determinism of the function's results. True if and only if a call to
this function is guaranteed to always return the same result given the
same parameters. (default True)
:return: UserDefinedTableFunctionWrapper or function.
.. versionadded:: 1.11.0
"""
# decorator
if f is None:
return functools.partial(_create_udtf, input_types=input_types, result_types=result_types,
deterministic=deterministic, name=name)
else:
return _create_udtf(f, input_types, result_types, deterministic, name)
def udaf(f: Union[Callable, AggregateFunction, Type] = None,
input_types: Union[List[DataType], DataType, str, List[str]] = None,
result_type: Union[DataType, str] = None, accumulator_type: Union[DataType, str] = None,
deterministic: bool = None, name: str = None,
func_type: str = "general") -> Union[UserDefinedAggregateFunctionWrapper, Callable]:
"""
Helper method for creating a user-defined aggregate function.
Example:
::
>>> # The input_types is optional.
>>> @udaf(result_type=DataTypes.FLOAT(), func_type="pandas")
... def mean_udaf(v):
... return v.mean()
>>> # Specify result_type via string
>>> @udaf(result_type='FLOAT', func_type="pandas")
... def mean_udaf(v):
... return v.mean()
:param f: user-defined aggregate function.
:param input_types: optional, the input data types.
:param result_type: the result data type.
:param accumulator_type: optional, the accumulator data type.
:param deterministic: the determinism of the function's results. True if and only if a call to
this function is guaranteed to always return the same result given the
same parameters. (default True)
:param name: the function name.
:param func_type: the type of the python function, available value: general, pandas,
(default: general)
:return: UserDefinedAggregateFunctionWrapper or function.
.. versionadded:: 1.12.0
"""
if func_type not in ('general', 'pandas'):
raise ValueError("The func_type must be one of 'general, pandas', got %s."
% func_type)
# decorator
if f is None:
return functools.partial(_create_udaf, input_types=input_types, result_type=result_type,
accumulator_type=accumulator_type, func_type=func_type,
deterministic=deterministic, name=name)
else:
return _create_udaf(f, input_types, result_type, accumulator_type, func_type,
deterministic, name)
def udtaf(f: Union[Callable, TableAggregateFunction, Type] = None,
input_types: Union[List[DataType], DataType, str, List[str]] = None,
result_type: Union[DataType, str] = None,
accumulator_type: Union[DataType, str] = None,
deterministic: bool = None, name: str = None,
func_type: str = 'general') -> Union[UserDefinedAggregateFunctionWrapper, Callable]:
"""
Helper method for creating a user-defined table aggregate function.
Example:
::
>>> # The input_types is optional.
>>> class Top2(TableAggregateFunction):
... def emit_value(self, accumulator):
... yield Row(accumulator[0])
... yield Row(accumulator[1])
...
... def create_accumulator(self):
... return [None, None]
...
... def accumulate(self, accumulator, *args):
... if args[0] is not None:
... if accumulator[0] is None or args[0] > accumulator[0]:
... accumulator[1] = accumulator[0]
... accumulator[0] = args[0]
... elif accumulator[1] is None or args[0] > accumulator[1]:
... accumulator[1] = args[0]
...
... def retract(self, accumulator, *args):
... accumulator[0] = accumulator[0] - 1
...
... def merge(self, accumulator, accumulators):
... for other_acc in accumulators:
... self.accumulate(accumulator, other_acc[0])
... self.accumulate(accumulator, other_acc[1])
...
... def get_accumulator_type(self):
... return 'ARRAY<BIGINT>'
...
... def get_result_type(self):
... return 'ROW<a BIGINT>'
>>> top2 = udtaf(Top2())
:param f: user-defined table aggregate function.
:param input_types: optional, the input data types.
:param result_type: the result data type.
:param accumulator_type: optional, the accumulator data type.
:param deterministic: the determinism of the function's results. True if and only if a call to
this function is guaranteed to always return the same result given the
same parameters. (default True)
:param name: the function name.
:param func_type: the type of the python function, available value: general
(default: general)
:return: UserDefinedAggregateFunctionWrapper or function.
.. versionadded:: 1.13.0
"""
if func_type != 'general':
raise ValueError("The func_type must be 'general', got %s."
% func_type)
if f is None:
return functools.partial(_create_udtaf, input_types=input_types, result_type=result_type,
accumulator_type=accumulator_type, func_type=func_type,
deterministic=deterministic, name=name)
else:
return _create_udtaf(f, input_types, result_type, accumulator_type, func_type,
deterministic, name)