-
Notifications
You must be signed in to change notification settings - Fork 13.5k
/
Copy pathwindow.py
454 lines (341 loc) · 15.9 KB
/
window.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
from py4j.java_gateway import get_method
from pyflink.java_gateway import get_gateway
from pyflink.table import Expression
from pyflink.table.expression import _get_java_expression
__all__ = [
'Tumble',
'Session',
'Slide',
'Over',
'GroupWindow',
'OverWindow'
]
from pyflink.table.utils import to_expression_jarray
class GroupWindow(object):
"""
A group window specification.
Group windows group rows based on time or row-count intervals and is therefore essentially a
special type of groupBy. Just like groupBy, group windows allow to compute aggregates
on groups of elements.
Infinite streaming tables can only be grouped into time or row intervals. Hence window
grouping is required to apply aggregations on streaming tables.
For finite batch tables, group windows provide shortcuts for time-based groupBy.
"""
def __init__(self, java_window):
self._java_window = java_window
class Tumble(object):
"""
Helper class for creating a tumbling window. Tumbling windows are consecutive, non-overlapping
windows of a specified fixed length. For example, a tumbling window of 5 minutes size groups
elements in 5 minutes intervals.
Example:
::
>>> from pyflink.table.expressions import col, lit
>>> Tumble.over(lit(10).minutes) \\
... .on(col("rowtime")) \\
... .alias("w")
"""
@classmethod
def over(cls, size: Expression) -> 'TumbleWithSize':
"""
Creates a tumbling window. Tumbling windows are fixed-size, consecutive, non-overlapping
windows of a specified fixed length. For example, a tumbling window of 5 minutes size
groups elements in 5 minutes intervals.
:param size: The size of the window as time or row-count interval.
:return: A partially defined tumbling window.
"""
return TumbleWithSize(get_gateway().jvm.Tumble.over(_get_java_expression(size)))
class TumbleWithSize(object):
"""
Tumbling window.
For streaming tables you can specify grouping by a event-time or processing-time attribute.
For batch tables you can specify grouping on a timestamp or long attribute.
"""
def __init__(self, java_window):
self._java_window = java_window
def on(self, time_field: Expression) -> 'TumbleWithSizeOnTime':
"""
Specifies the time attribute on which rows are grouped.
For streaming tables you can specify grouping by a event-time or processing-ti
attribute.
For batch tables you can specify grouping on a timestamp or long attribute.
:param time_field: Time attribute for streaming and batch tables.
:return: A tumbling window on event-time/processing-time.
"""
return TumbleWithSizeOnTime(self._java_window.on(_get_java_expression(time_field)))
class TumbleWithSizeOnTime(object):
"""
Tumbling window on time. You need to assign an alias for the window.
"""
def __init__(self, java_window):
self._java_window = java_window
def alias(self, alias: str) -> 'GroupWindow':
"""
Assigns an alias for this window that the following
:func:`~pyflink.table.GroupWindowedTable.group_by` and
:func:`~pyflink.table.WindowGroupedTable.select` clause can refer to.
:func:`~pyflink.table.WindowGroupedTable.select` statement can access window properties
such as window start or end time.
:param alias: Alias for this window.
:return: This window.
"""
return GroupWindow(get_method(self._java_window, "as")(alias))
class Session(object):
"""
Helper class for creating a session window. The boundary of session windows are defined by
intervals of inactivity, i.e., a session window is closes if no event appears for a defined
gap period.
Example:
::
>>> from pyflink.table.expressions import col, lit
>>> Session.with_gap(lit(10).minutes) \\
... .on(col("rowtime")) \\
... .alias("w")
"""
@classmethod
def with_gap(cls, gap: Expression) -> 'SessionWithGap':
"""
Creates a session window. The boundary of session windows are defined by
intervals of inactivity, i.e., a session window is closes if no event appears for a defined
gap period.
:param gap: Specifies how long (as interval of milliseconds) to wait for new data before
closing the session window.
:return: A partially defined session window.
"""
return SessionWithGap(get_gateway().jvm.Session.withGap(_get_java_expression(gap)))
class SessionWithGap(object):
"""
Session window.
For streaming tables you can specify grouping by a event-time or processing-time attribute.
For batch tables you can specify grouping on a timestamp or long attribute.
"""
def __init__(self, java_window):
self._java_window = java_window
def on(self, time_field: Expression) -> 'SessionWithGapOnTime':
"""
Specifies the time attribute on which rows are grouped.
For streaming tables you can specify grouping by a event-time or processing-time
attribute.
For batch tables you can specify grouping on a timestamp or long attribute.
:param time_field: Time attribute for streaming and batch tables.
:return: A tumbling window on event-time.
"""
return SessionWithGapOnTime(self._java_window.on(_get_java_expression(time_field)))
class SessionWithGapOnTime(object):
"""
Session window on time. You need to assign an alias for the window.
"""
def __init__(self, java_window):
self._java_window = java_window
def alias(self, alias: str) -> 'GroupWindow':
"""
Assigns an alias for this window that the following
:func:`~pyflink.table.GroupWindowedTable.group_by` and
:func:`~pyflink.table.WindowGroupedTable.select` clause can refer to.
:func:`~pyflink.table.WindowGroupedTable.select` statement can access window properties
such as window start or end time.
:param alias: Alias for this window.
:return: This window.
"""
return GroupWindow(get_method(self._java_window, "as")(alias))
class Slide(object):
"""
Helper class for creating a sliding window. Sliding windows have a fixed size and slide by
a specified slide interval. If the slide interval is smaller than the window size, sliding
windows are overlapping. Thus, an element can be assigned to multiple windows.
For example, a sliding window of size 15 minutes with 5 minutes sliding interval groups
elements of 15 minutes and evaluates every five minutes. Each element is contained in three
consecutive window evaluations.
Example:
::
>>> from pyflink.table.expressions import col, lit
>>> Slide.over(lit(10).minutes) \\
... .every(lit(5).minutes) \\
... .on(col("rowtime")) \\
... .alias("w")
"""
@classmethod
def over(cls, size: Expression) -> 'SlideWithSize':
"""
Creates a sliding window. Sliding windows have a fixed size and slide by
a specified slide interval. If the slide interval is smaller than the window size, sliding
windows are overlapping. Thus, an element can be assigned to multiple windows.
For example, a sliding window of size 15 minutes with 5 minutes sliding interval groups
elements of 15 minutes and evaluates every five minutes. Each element is contained in three
consecutive window evaluations.
:param size: The size of the window as time or row-count interval.
:return: A partially specified sliding window.
"""
return SlideWithSize(get_gateway().jvm.Slide.over(_get_java_expression(size)))
class SlideWithSize(object):
"""
Partially specified sliding window. The size of the window either as time or row-count
interval.
"""
def __init__(self, java_window):
self._java_window = java_window
def every(self, slide: Expression) -> 'SlideWithSizeAndSlide':
"""
Specifies the window's slide as time or row-count interval.
The slide determines the interval in which windows are started. Hence, sliding windows can
overlap if the slide is smaller than the size of the window.
For example, you could have windows of size 15 minutes that slide by 3 minutes. With this
15 minutes worth of elements are grouped every 3 minutes and each row contributes to 5
windows.
:param slide: The slide of the window either as time or row-count interval.
:return: A sliding window.
"""
return SlideWithSizeAndSlide(self._java_window.every(_get_java_expression(slide)))
class SlideWithSizeAndSlide(object):
"""
Sliding window. The size of the window either as time or row-count interval.
For streaming tables you can specify grouping by a event-time or processing-time attribute.
For batch tables you can specify grouping on a timestamp or long attribute.
"""
def __init__(self, java_window):
self._java_window = java_window
def on(self, time_field: Expression) -> 'SlideWithSizeAndSlideOnTime':
"""
Specifies the time attribute on which rows are grouped.
For streaming tables you can specify grouping by a event-time or processing-time
attribute.
For batch tables you can specify grouping on a timestamp or long attribute.
"""
return SlideWithSizeAndSlideOnTime(self._java_window.on(_get_java_expression(time_field)))
class SlideWithSizeAndSlideOnTime(object):
"""
Sliding window on time. You need to assign an alias for the window.
"""
def __init__(self, java_window):
self._java_window = java_window
def alias(self, alias: str) -> 'GroupWindow':
"""
Assigns an alias for this window that the following
:func:`~pyflink.table.GroupWindowedTable.group_by` and
:func:`~pyflink.table.WindowGroupedTable.select` clause can refer to.
:func:`~pyflink.table.WindowGroupedTable.select` statement can access window properties
such as window start or end time.
:param alias: Alias for this window.
:return: This window.
"""
return GroupWindow(get_method(self._java_window, "as")(alias))
class Over(object):
"""
Helper class for creating an over window. Similar to SQL, over window aggregates compute an
aggregate for each input row over a range of its neighboring rows.
Over-windows for batch tables are currently not supported.
Example:
::
>>> from pyflink.table.expressions import col, UNBOUNDED_RANGE
>>> Over.partition_by(col("a")) \\
... .order_by(col("rowtime")) \\
... .preceding(UNBOUNDED_RANGE) \\
... .alias("w")
"""
@classmethod
def order_by(cls, order_by: Expression) -> 'OverWindowPartitionedOrdered':
"""
Specifies the time attribute on which rows are ordered.
For streaming tables, reference a rowtime or proctime time attribute here
to specify the time mode.
:param order_by: Field reference.
:return: An over window with defined order.
"""
return OverWindowPartitionedOrdered(get_gateway().jvm.Over.orderBy(
_get_java_expression(order_by)))
@classmethod
def partition_by(cls, *partition_by: Expression) -> 'OverWindowPartitioned':
"""
Partitions the elements on some partition keys.
Each partition is individually sorted and aggregate functions are applied to each
partition separately.
:param partition_by: List of field references.
:return: An over window with defined partitioning.
"""
return OverWindowPartitioned(get_gateway().jvm.Over.partitionBy(
to_expression_jarray(partition_by)))
class OverWindowPartitionedOrdered(object):
"""
Partially defined over window with (optional) partitioning and order.
"""
def __init__(self, java_over_window):
self._java_over_window = java_over_window
def alias(self, alias: str) -> 'OverWindow':
"""
Set the preceding offset (based on time or row-count intervals) for over window.
:param alias: Preceding offset relative to the current row.
:return: An over window with defined preceding.
"""
return OverWindow(get_method(self._java_over_window, "as")(alias))
def preceding(self, preceding: Expression) -> 'OverWindowPartitionedOrderedPreceding':
"""
Set the preceding offset (based on time or row-count intervals) for over window.
:param preceding: Preceding offset relative to the current row.
:return: An over window with defined preceding.
"""
return OverWindowPartitionedOrderedPreceding(
self._java_over_window.preceding(_get_java_expression(preceding)))
class OverWindowPartitionedOrderedPreceding(object):
"""
Partially defined over window with (optional) partitioning, order, and preceding.
"""
def __init__(self, java_over_window):
self._java_over_window = java_over_window
def alias(self, alias: str) -> 'OverWindow':
"""
Assigns an alias for this window that the following
:func:`~pyflink.table.OverWindowedTable.select` clause can refer to.
:param alias: Alias for this over window.
:return: The fully defined over window.
"""
return OverWindow(get_method(self._java_over_window, "as")(alias))
def following(self, following: Expression) -> 'OverWindowPartitionedOrderedPreceding':
"""
Set the following offset (based on time or row-count intervals) for over window.
:param following: Following offset that relative to the current row.
:return: An over window with defined following.
"""
return OverWindowPartitionedOrderedPreceding(
self._java_over_window.following(_get_java_expression(following)))
class OverWindowPartitioned(object):
"""
Partially defined over window with partitioning.
"""
def __init__(self, java_over_window):
self._java_over_window = java_over_window
def order_by(self, order_by: Expression) -> 'OverWindowPartitionedOrdered':
"""
Specifies the time attribute on which rows are ordered.
For streaming tables, reference a rowtime or proctime time attribute here
to specify the time mode.
For batch tables, refer to a timestamp or long attribute.
:param order_by: Field reference.
:return: An over window with defined order.
"""
return OverWindowPartitionedOrdered(self._java_over_window.orderBy(
_get_java_expression(order_by)))
class OverWindow(object):
"""
An over window specification.
Similar to SQL, over window aggregates compute an aggregate for each input row over a range
of its neighboring rows.
"""
def __init__(self, java_over_window):
self._java_over_window = java_over_window