-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathnetwork.cpp
450 lines (394 loc) · 14.1 KB
/
network.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
* network.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2024 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <boost/asio.hpp>
#include "flow/Arena.h"
#include "flow/network.h"
#include "flow/IUDPSocket.h"
#include "flow/flow.h"
#include "flow/ChaosMetrics.h"
#include "flow/UnitTest.h"
#include "flow/IConnection.h"
ChaosMetrics::ChaosMetrics() {
clear();
}
void ChaosMetrics::clear() {
std::memset(this, 0, sizeof(ChaosMetrics));
startTime = g_network ? g_network->now() : 0;
}
void ChaosMetrics::getFields(TraceEvent* e) {
std::pair<const char*, unsigned int> metrics[] = { { "DiskDelays", diskDelays }, { "BitFlips", bitFlips } };
if (e != nullptr) {
for (auto& m : metrics) {
char c = m.first[0];
if (c != 0) {
e->detail(m.first, m.second);
}
}
}
}
DiskFailureInjector* DiskFailureInjector::injector() {
auto res = g_network->global(INetwork::enDiskFailureInjector);
if (!res) {
res = new DiskFailureInjector();
g_network->setGlobal(INetwork::enDiskFailureInjector, res);
}
return static_cast<DiskFailureInjector*>(res);
}
void DiskFailureInjector::setDiskFailure(double interval, double stallFor, double throttleFor) {
stallInterval = interval;
stallPeriod = stallFor;
stallUntil = std::max(stallUntil, g_network->now() + stallFor);
// random stall duration in ms (chosen once)
// TODO: make this delay configurable
stallDuration = 0.001 * deterministicRandom()->randomInt(1, 5);
throttlePeriod = throttleFor;
throttleUntil = std::max(throttleUntil, g_network->now() + throttleFor);
TraceEvent("SetDiskFailure")
.detail("Now", g_network->now())
.detail("StallInterval", interval)
.detail("StallPeriod", stallFor)
.detail("StallUntil", stallUntil)
.detail("ThrottlePeriod", throttleFor)
.detail("ThrottleUntil", throttleUntil);
}
double DiskFailureInjector::getStallDelay() const {
// If we are in a stall period and a stallInterval was specified, determine the
// delay to be inserted
if (((stallUntil - g_network->now()) > 0.0) && stallInterval) {
auto timeElapsed = fmod(g_network->now(), stallInterval);
return std::max(0.0, stallDuration - timeElapsed);
}
return 0.0;
}
double DiskFailureInjector::getThrottleDelay() const {
// If we are in the throttle period, insert a random delay (in ms)
// TODO: make this delay configurable
if ((throttleUntil - g_network->now()) > 0.0)
return (0.001 * deterministicRandom()->randomInt(1, 3));
return 0.0;
}
double DiskFailureInjector::getDiskDelay() const {
return getStallDelay() + getThrottleDelay();
}
BitFlipper* BitFlipper::flipper() {
auto res = g_network->global(INetwork::enBitFlipper);
if (!res) {
res = new BitFlipper();
g_network->setGlobal(INetwork::enBitFlipper, res);
}
return static_cast<BitFlipper*>(res);
}
bool IPAddress::operator==(const IPAddress& rhs) const {
return addr == rhs.addr;
}
bool IPAddress::operator!=(const IPAddress& addr) const {
return !(*this == addr);
}
bool IPAddress::operator<(const IPAddress& rhs) const {
return addr < rhs.addr;
}
std::string IPAddress::toString() const {
if (isV6()) {
return boost::asio::ip::address_v6(std::get<IPAddressStore>(addr)).to_string();
} else {
auto ip = std::get<uint32_t>(addr);
return format("%d.%d.%d.%d", (ip >> 24) & 0xff, (ip >> 16) & 0xff, (ip >> 8) & 0xff, ip & 0xff);
}
}
Optional<IPAddress> IPAddress::parse(std::string const& str) {
try {
auto addr = boost::asio::ip::address::from_string(str);
return addr.is_v6() ? IPAddress(addr.to_v6().to_bytes()) : IPAddress(addr.to_v4().to_ulong());
} catch (...) {
return Optional<IPAddress>();
}
}
bool IPAddress::isValid() const {
if (isV6()) {
const auto& ip = std::get<IPAddressStore>(addr);
return std::any_of(ip.begin(), ip.end(), [](uint8_t part) { return part != 0; });
}
return std::get<uint32_t>(addr) != 0;
}
NetworkAddress NetworkAddress::parse(std::string const& s) {
if (s.empty()) {
throw connection_string_invalid();
}
bool isTLS = false;
NetworkAddressFromHostname fromHostname = NetworkAddressFromHostname::False;
std::string f = s;
const auto& pos = f.find("(fromHostname)");
if (pos != std::string::npos) {
fromHostname = NetworkAddressFromHostname::True;
f = f.substr(0, pos);
}
if (f.size() > 4 && strcmp(f.c_str() + f.size() - 4, ":tls") == 0) {
isTLS = true;
f = f.substr(0, f.size() - 4);
}
if (f[0] == '[') {
// IPv6 address/port pair is represented as "[ip]:port"
auto addrEnd = f.find_first_of(']');
if (addrEnd == std::string::npos || f[addrEnd + 1] != ':') {
throw connection_string_invalid();
}
auto port = std::stoi(f.substr(addrEnd + 2));
auto addr = IPAddress::parse(f.substr(1, addrEnd - 1));
if (!addr.present()) {
throw connection_string_invalid();
}
return NetworkAddress(addr.get(), port, true, isTLS, fromHostname);
} else {
// TODO: Use IPAddress::parse
int a, b, c, d, port, count = -1;
if (sscanf(f.c_str(), "%d.%d.%d.%d:%d%n", &a, &b, &c, &d, &port, &count) < 5 || count != f.size())
throw connection_string_invalid();
return NetworkAddress((a << 24) + (b << 16) + (c << 8) + d, port, true, isTLS, fromHostname);
}
}
Optional<NetworkAddress> NetworkAddress::parseOptional(std::string const& s) {
try {
return NetworkAddress::parse(s);
} catch (Error& e) {
ASSERT(e.code() == error_code_connection_string_invalid);
return Optional<NetworkAddress>();
}
}
std::vector<NetworkAddress> NetworkAddress::parseList(std::string const& addrs) {
// Split addrs on ',' and parse them individually
std::vector<NetworkAddress> coord;
for (int p = 0; p < addrs.length();) {
int pComma = addrs.find_first_of(',', p);
if (pComma == addrs.npos) {
pComma = addrs.length();
}
coord.push_back(NetworkAddress::parse(addrs.substr(p, pComma - p)));
p = pComma + 1;
}
return coord;
}
std::string NetworkAddress::toString() const {
std::string ipString = formatIpPort(ip, port) + (isTLS() ? ":tls" : "");
if (fromHostname) {
return ipString + "(fromHostname)";
}
return ipString;
}
std::string toIPVectorString(const std::vector<uint32_t>& ips) {
std::string output;
const char* space = "";
for (const auto& ip : ips) {
output += format("%s%d.%d.%d.%d", space, (ip >> 24) & 0xff, (ip >> 16) & 0xff, (ip >> 8) & 0xff, ip & 0xff);
space = " ";
}
return output;
}
std::string toIPVectorString(const std::vector<IPAddress>& ips) {
std::string output;
const char* space = "";
for (auto ip : ips) {
output += format("%s%s", space, ip.toString().c_str());
space = " ";
}
return output;
}
std::string formatIpPort(const IPAddress& ip, uint16_t port) {
const char* patt = ip.isV6() ? "[%s]:%d" : "%s:%d";
return format(patt, ip.toString().c_str(), port);
}
Optional<std::vector<NetworkAddress>> DNSCache::find(const std::string& host, const std::string& service) {
auto it = hostnameToAddresses.find(host + ":" + service);
if (it != hostnameToAddresses.end()) {
return it->second;
}
return {};
}
void DNSCache::add(const std::string& host, const std::string& service, const std::vector<NetworkAddress>& addresses) {
hostnameToAddresses[host + ":" + service] = addresses;
}
void DNSCache::remove(const std::string& host, const std::string& service) {
auto it = hostnameToAddresses.find(host + ":" + service);
if (it != hostnameToAddresses.end()) {
hostnameToAddresses.erase(it);
}
}
void DNSCache::clear() {
hostnameToAddresses.clear();
}
std::string DNSCache::toString() {
std::string ret;
for (auto it = hostnameToAddresses.begin(); it != hostnameToAddresses.end(); ++it) {
if (it != hostnameToAddresses.begin()) {
ret += ';';
}
ret += it->first + ',';
const std::vector<NetworkAddress>& addresses = it->second;
for (int i = 0; i < addresses.size(); ++i) {
ret += addresses[i].toString();
if (i != addresses.size() - 1) {
ret += ',';
}
}
}
return ret;
}
DNSCache DNSCache::parseFromString(const std::string& s) {
std::map<std::string, std::vector<NetworkAddress>> dnsCache;
for (int p = 0; p < s.length();) {
int pSemiColumn = s.find_first_of(';', p);
if (pSemiColumn == s.npos) {
pSemiColumn = s.length();
}
std::string oneMapping = s.substr(p, pSemiColumn - p);
std::string hostname;
std::vector<NetworkAddress> addresses;
for (int i = 0; i < oneMapping.length();) {
int pComma = oneMapping.find_first_of(',', i);
if (pComma == oneMapping.npos) {
pComma = oneMapping.length();
}
if (!i) {
// The first part is hostname
hostname = oneMapping.substr(i, pComma - i);
} else {
addresses.push_back(NetworkAddress::parse(oneMapping.substr(i, pComma - i)));
}
i = pComma + 1;
}
dnsCache[hostname] = addresses;
p = pSemiColumn + 1;
}
return DNSCache(dnsCache);
}
TEST_CASE("/flow/DNSCache") {
DNSCache dnsCache;
std::vector<NetworkAddress> networkAddresses;
NetworkAddress address1(IPAddress(0x13131313), 1), address2(IPAddress(0x14141414), 2);
networkAddresses.push_back(address1);
networkAddresses.push_back(address2);
dnsCache.add("testhost1", "port1", networkAddresses);
ASSERT(dnsCache.find("testhost1", "port1").present());
ASSERT(!dnsCache.find("testhost1", "port2").present());
std::vector<NetworkAddress> resolvedNetworkAddresses = dnsCache.find("testhost1", "port1").get();
ASSERT(resolvedNetworkAddresses.size() == 2);
ASSERT(std::find(resolvedNetworkAddresses.begin(), resolvedNetworkAddresses.end(), address1) !=
resolvedNetworkAddresses.end());
ASSERT(std::find(resolvedNetworkAddresses.begin(), resolvedNetworkAddresses.end(), address2) !=
resolvedNetworkAddresses.end());
dnsCache.remove("testhost1", "port1");
ASSERT(!dnsCache.find("testhost1", "port1").present());
dnsCache.add("testhost1", "port2", networkAddresses);
ASSERT(dnsCache.find("testhost1", "port2").present());
dnsCache.clear();
ASSERT(!dnsCache.find("testhost1", "port2").present());
return Void();
}
TEST_CASE("/flow/DNSCacheParsing") {
std::string dnsCacheString;
ASSERT(DNSCache::parseFromString(dnsCacheString).toString() == dnsCacheString);
dnsCacheString = "testhost1:port1,[::1]:4800:tls(fromHostname)";
ASSERT(DNSCache::parseFromString(dnsCacheString).toString() == dnsCacheString);
dnsCacheString = "testhost1:port1,[::1]:4800,[2001:db8:85a3::8a2e:370:7334]:4800;testhost2:port2,[2001:db8:85a3::"
"8a2e:370:7334]:4800:tls(fromHostname),8.8.8.8:12";
ASSERT(DNSCache::parseFromString(dnsCacheString).toString() == dnsCacheString);
return Void();
}
Future<Reference<IConnection>> INetworkConnections::connect(const std::string& host,
const std::string& service,
bool isTLS) {
// Use map to create an actor that returns an endpoint or throws
Future<NetworkAddress> pickEndpoint =
map(resolveTCPEndpoint(host, service), [=](std::vector<NetworkAddress> const& addresses) -> NetworkAddress {
NetworkAddress addr = INetworkConnections::pickOneAddress(addresses);
addr.fromHostname = true;
if (isTLS) {
addr.flags = NetworkAddress::FLAG_TLS;
}
return addr;
});
// Wait for the endpoint to return, then wait for connect(endpoint) and return it.
// Template types are being provided explicitly because they can't be automatically deduced for some reason.
return mapAsync(pickEndpoint, [=](NetworkAddress const& addr) -> Future<Reference<IConnection>> {
return connectExternal(addr);
});
}
IUDPSocket::~IUDPSocket() {}
const std::vector<int> NetworkMetrics::starvationBins = { 1, 3500, 7000, 7500, 8500, 8900, 10500 };
TEST_CASE("/flow/network/ipaddress") {
ASSERT(NetworkAddress::parse("[::1]:4800").toString() == "[::1]:4800");
{
auto addr = "[2001:0db8:85a3:0000:0000:8a2e:0370:7334]:4800";
auto addrParsed = NetworkAddress::parse(addr);
auto addrCompressed = "[2001:db8:85a3::8a2e:370:7334]:4800";
ASSERT(addrParsed.isV6());
ASSERT(!addrParsed.isTLS());
ASSERT(addrParsed.fromHostname == false);
ASSERT(addrParsed.toString() == addrCompressed);
ASSERT(addrParsed.toString() == addrCompressed);
}
{
auto addr = "[2001:0db8:85a3:0000:0000:8a2e:0370:7334]:4800:tls(fromHostname)";
auto addrParsed = NetworkAddress::parse(addr);
auto addrCompressed = "[2001:db8:85a3::8a2e:370:7334]:4800:tls(fromHostname)";
ASSERT(addrParsed.isV6());
ASSERT(addrParsed.isTLS());
ASSERT(addrParsed.fromHostname == true);
ASSERT(addrParsed.toString() == addrCompressed);
}
{
auto addr = "2001:0db8:85a3:0000:0000:8a2e:0370:7334";
auto addrCompressed = "2001:db8:85a3::8a2e:370:7334";
auto addrParsed = IPAddress::parse(addr);
ASSERT(addrParsed.present());
ASSERT(addrParsed.get().toString() == addrCompressed);
}
{
auto addr = "2001";
auto addrParsed = IPAddress::parse(addr);
ASSERT(!addrParsed.present());
}
{
auto addr = "8.8.8.8:12";
auto addrParsed = IPAddress::parse(addr);
ASSERT(!addrParsed.present());
}
return Void();
}
TEST_CASE("/flow/network/ipV6Preferred") {
std::vector<NetworkAddress> addresses;
for (int i = 0; i < 50; ++i) {
std::string s = fmt::format("{}.{}.{}.{}:{}", i, i, i, i, i);
addresses.push_back(NetworkAddress::parse(s));
}
std::string ipv6 = "[2001:db8:85a3::8a2e:370:7334]:4800";
addresses.push_back(NetworkAddress::parse(ipv6));
for (int i = 50; i < 100; ++i) {
std::string s = fmt::format("{}.{}.{}.{}:{}", i, i, i, i, i);
addresses.push_back(NetworkAddress::parse(s));
}
// Confirm IPv6 is always preferred.
ASSERT((INetworkConnections::pickOneAddress(addresses).toString() == ipv6) ==
!FLOW_KNOBS->RESOLVE_PREFER_IPV4_ADDR);
return Void();
}
NetworkInfo::NetworkInfo() : handshakeLock(new FlowLock(FLOW_KNOBS->TLS_HANDSHAKE_LIMIT)) {}
NetworkInfo::~NetworkInfo() {
delete handshakeLock;
}