-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathComplex+AlgebraicField.swift
180 lines (170 loc) · 7 KB
/
Complex+AlgebraicField.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//===--- Complex+AlgebraicField.swift -------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019-2024 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
import RealModule
extension Complex: AlgebraicField {
/// The multiplicative identity `1 + 0i`.
@_transparent
public static var one: Complex {
Complex(1, 0)
}
/// The [complex conjugate][conj] of this value.
///
/// [conj]: https://en.wikipedia.org/wiki/Complex_conjugate
@_transparent
public var conjugate: Complex {
Complex(x, -y)
}
@_transparent
public static func /=(z: inout Complex, w: Complex) {
z = z / w
}
@_transparent
public static func /(z: Complex, w: Complex) -> Complex {
// Try the naive expression z/w = z * (conj(w) / |w|^2); if we can
// compute this without over/underflow, everything is fine and the
// result is correct. If not, we have to rescale and do the
// computation carefully (see below).
let lenSq = w.lengthSquared
guard lenSq.isNormal else { return rescaledDivide(z, w) }
return z * w.conjugate.divided(by: lenSq)
}
@usableFromInline @_alwaysEmitIntoClient @inline(never)
internal static func rescaledDivide(_ z: Complex, _ w: Complex) -> Complex {
if w.isZero { return .infinity }
if !w.isFinite { return .zero }
// Scaling algorithm adapted from Doug Priest's "Efficient Scaling for
// Complex Division":
if w.magnitude < .leastNormalMagnitude {
// A difference from Priest's algorithm is that he didn't have to worry
// about types like Float16, where the significand width is comparable
// to the exponent range, such that |leastNormalMagnitude|^(-¾) isn't
// representable (e.g. for Float16 it would want to be 2¹⁸, but the
// largest allowed exponent is 15). Note that it's critical to use zʹ/wʹ
// after rescaling to avoid this, rather than falling through into the
// normal rescaling, because otherwise we might end up back in the
// situation where |w| ~ 1.
let s = 1/(RealType(RealType.radix) * .leastNormalMagnitude)
let wʹ = w.multiplied(by: s)
let zʹ = z.multiplied(by: s)
return zʹ / wʹ
}
// Having handled that case, we proceed pretty similarly to Priest:
//
// 1. Choose real scale s ~ |w|^(-¾), an exact power of the radix.
// 2. wʹ ← sw
// 3. zʹ ← sz
// 4. return zʹ * (wʹ.conjugate / wʹ.lengthSquared) (i.e. zʹ/wʹ).
//
// Why is this safe and accurate? First, observe that wʹ and zʹ are both
// computed exactly because:
//
// - s is an exact power of radix.
// - wʹ ~ |w|^(¼), and hence cannot overflow or underflow.
// - zʹ might overflow or underflow, but only if the final result also
// overflows or underflows. (This is more subtle than I make it
// sound. In particular, most of the fast ways one might try to
// compute s give rise to a situation where when |w| is close to
// one, multiplication by s is a dilation even though the actual
// division is a contraction or vice-versa, and thus intermediate
// computations might incorrectly overflow or underflow. Priest
// had to take some care to avoid this situation, but we do not,
// because we have already ruled out |w| ~ 1 before we call this
// function.)
//
// Next observe that |wʹ.lengthSquared| ~ |w|^(½), so again this cannot
// overflow or underflow, and neither can (wʹ.conjugate/wʹ.lengthSquared),
// which has magnitude like |w|^(-¼).
//
// Note that because the scale factor is always a power of the radix,
// the rescaling does not affect rounding, and so this algorithm is scale-
// invariant compared to the mainline `/` implementation, up to the
// underflow boundary.
//
// Note that our final assembly of the result is different from Priest;
// he applies s to w twice, instead of once to w and once to z, and
// does the product as (zw̅ʺ)*(1/|wʹ|²), while we do zʹ(w̅ʹ/|wʹ|²). We
// prefer our version for three reasons:
//
// 1. it extracts a little more ILP
// 2. it makes it so that we get exactly the same roundings on the
// rescaled divide path as on the fast path, so that z/w = tz/tw
// when tz and tw are computed exactly.
// 3. it unlocks a future optimization where we hoist s and
// (w̅ʹ/|wʹ|²) and make divisions all fast-path without perturbing
// rounding.
let s = RealType(
sign: .plus,
exponent: -3*w.magnitude.exponent/4,
significand: 1
)
let wʹ = w.multiplied(by: s)
let zʹ = z.multiplied(by: s)
return zʹ * wʹ.conjugate.divided(by: wʹ.lengthSquared)
}
/// A normalized complex number with the same phase as this value.
///
/// If such a value cannot be produced (because the phase of zero and
/// infinity is undefined), `nil` is returned.
@inlinable
public var normalized: Complex? {
if length.isNormal {
return self.divided(by: length)
}
if isZero || !isFinite {
return nil
}
return self.divided(by: magnitude).normalized
}
/// The reciprocal of this value, if it can be computed without undue
/// overflow or underflow.
///
/// If z.reciprocal is non-nil, you can safely replace division by z with
/// multiplication by this value. It is not advantageous to do this for an
/// isolated division, but if you are dividing many values by a single
/// denominator, this will often be a significant performance win.
///
/// A typical use case looks something like this:
/// ```
/// func divide<T: Real>(data: [Complex<T>], by divisor: Complex<T>) -> [Complex<T>] {
/// // If divisor is well-scaled, multiply by reciprocal.
/// if let recip = divisor.reciprocal {
/// return data.map { $0 * recip }
/// }
/// // Fallback on using division.
/// return data.map { $0 / divisor }
/// }
/// ```
///
/// Error Bounds:
///
/// Unlike real types, when working with complex types, multiplying by the
/// reciprocal instead of dividing cannot change the result. If the
/// reciprocal is non-nil, the two computations are always equivalent.
@inlinable
public var reciprocal: Complex? {
let recip = 1/self
if recip.isNormal || isZero || !isFinite {
return recip
}
return nil
}
@_transparent
public static func _relaxedAdd(_ a: Self, _ b: Self) -> Self {
Complex(Relaxed.sum(a.x, b.x), Relaxed.sum(a.y, b.y))
}
@_transparent
public static func _relaxedMul(_ a: Self, _ b: Self) -> Self {
Complex(
Relaxed.sum(Relaxed.product(a.x, b.x), -Relaxed.product(a.y, b.y)),
Relaxed.sum(Relaxed.product(a.x, b.y), Relaxed.product(a.y, b.x))
)
}
}