-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathComplex+ElementaryFunctions.swift
482 lines (458 loc) · 20.4 KB
/
Complex+ElementaryFunctions.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//===--- Complex+ElementaryFunctions.swift --------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Implementation goals, in order of priority:
//
// 1. Get the branch cuts right. We should match Kahan's /Much Ado/
// paper for finite values.
// 2. Have good relative accuracy in the complex norm.
// 3. Preserve sign symmetries where possible.
// 4. Handle the point at infinity consistently with basic operations.
// This means diverging from what C and C++ do for non-finite inputs.
// 5. Get good componentwise accuracy /when possible/. I don't know how
// to do that for all of these functions off the top of my head, and
// I don't think that other libraries have tried to do so in general,
// so this is a research project. We should not sacrifice 1-4 for it.
// Note that multiplication and division don't even provide good
// componentwise relative accuracy, so it's _totally OK_ to not get
// it for these functions too. But: it's a dynamite long-term research
// project.
// 6. Give the best performance we can. We should care about performance,
// but with lower precedence than the other considerations.
//
// Except where derivations are given, the expressions used here are all
// adapted from Kahan's 1986 paper "Branch Cuts for Complex Elementary
// Functions; or: Much Ado About Nothing's Sign Bit".
import RealModule
extension Complex: ElementaryFunctions {
// MARK: - exp-like functions
/// The complex exponential function e^z whose base `e` is the base of the
/// natural logarithm.
///
/// Mathematically, this operation can be expanded in terms of the `Real`
/// operations `exp`, `cos` and `sin` as follows:
/// ```
/// exp(x + iy) = exp(x) exp(iy)
/// = exp(x) cos(y) + i exp(x) sin(y)
/// ```
/// Note that naive evaluation of this expression in floating-point would be
/// prone to premature overflow, since `cos` and `sin` both have magnitude
/// less than 1 for most inputs (i.e. `exp(x)` may be infinity when
/// `exp(x) cos(y)` would not be).
@inlinable
public static func exp(_ z: Complex) -> Complex {
guard z.isFinite else { return z }
// If x < log(greatestFiniteMagnitude), then exp(x) does not overflow.
// To protect ourselves against sketchy log or exp implementations in
// an unknown host library, or slight rounding disagreements between
// the two, subtract one from the bound for a little safety margin.
guard z.x < RealType.log(.greatestFiniteMagnitude) - 1 else {
let halfScale = RealType.exp(z.x/2)
let phase = Complex(RealType.cos(z.y), RealType.sin(z.y))
return phase.multiplied(by: halfScale).multiplied(by: halfScale)
}
return Complex(.cos(z.y), .sin(z.y)).multiplied(by: .exp(z.x))
}
@inlinable
public static func expMinusOne(_ z: Complex) -> Complex {
// exp(x + iy) - 1 = (exp(x) cos(y) - 1) + i exp(x) sin(y)
// -------- u --------
// Note that the imaginary part is just the usual exp(x) sin(y);
// the only trick is computing the real part ("u"):
//
// u = exp(x) cos(y) - 1
// = exp(x) cos(y) - cos(y) + cos(y) - 1
// = (exp(x) - 1) cos(y) + (cos(y) - 1)
// = expMinusOne(x) cos(y) + cosMinusOne(y)
//
// Note: most implementations of expm1 for complex (e.g. Julia's)
// factor the real part as follows instead:
//
// exp(x) cosMinuxOne(y) + expMinusOne(x)
//
// The other implementation that is sometimes seen is:
//
// expMinusOne(z) = 2*exp(z/2)*sinh(z/2)
//
// All three of these implementations provide good relative error
// bounds _in the complex norm_, but the cosineMinusOne-based
// implementation has the best _componentwise_ error characteristics,
// which is why we use it here:
//
// Implementation | Real | Imaginary |
// ---------------+--------------------+----------------+
// Ours | Hybrid bound | Relative bound |
// Standard | No bound | Relative bound |
// Half Angle | Hybrid bound | Hybrid bound |
//
// FUTURE WORK: devise an algorithm that achieves good _relative_ error
// in the real component as well. Doing this efficiently is a research
// project--exp(x) cos(y) - 1 can be very nearly zero along a curve in
// the complex plane, not only at zero. Evaluating it accurately
// _without_ depending on arbitrary-precision exp and cos is an
// interesting challenge.
guard z.isFinite else { return z }
// If exp(z) is close to the overflow boundary, we don't need to
// worry about the "MinusOne" part of this function; we're just
// computing exp(z). (Even when z.y is near a multiple of π/2,
// it can't be close enough to overcome the scaling from exp(z.x),
// so the -1 term is _always_ negligable). So we simply handle
// these cases exactly the same as exp(z).
guard z.x < RealType.log(.greatestFiniteMagnitude) - 1 else {
let halfScale = RealType.exp(z.x/2)
let phase = Complex(RealType.cos(z.y), RealType.sin(z.y))
return phase.multiplied(by: halfScale).multiplied(by: halfScale)
}
// Special cases out of the way, evaluate as discussed above.
return Complex(
Relaxed.multiplyAdd(.cos(z.y), .expMinusOne(z.x), .cosMinusOne(z.y)),
.exp(z.x) * .sin(z.y)
)
}
// cosh(x + iy) = cosh(x) cos(y) + i sinh(x) sin(y).
//
// Like exp, cosh is entire, so we do not need to worry about where
// branch cuts fall. Also like exp, cancellation never occurs in the
// evaluation of the naive expression, so all we need to be careful
// about is the behavior near the overflow boundary.
//
// Fortunately, if |x| >= -log(ulpOfOne), cosh(x) and sinh(x) are
// both just exp(|x|)/2, and we already know how to compute that.
//
// This function and sinh should stay in sync; if you make a
// modification here, you should almost surely make a parallel
// modification to sinh below.
@inlinable
public static func cosh(_ z: Complex) -> Complex {
guard z.isFinite else { return z }
guard z.x.magnitude < -RealType.log(.ulpOfOne) else {
let phase = Complex(RealType.cos(z.y), RealType.sin(z.y))
let firstScale = RealType.exp(z.x.magnitude/2)
let secondScale = firstScale/2
return phase.multiplied(by: firstScale).multiplied(by: secondScale)
}
// Future optimization opportunity: expm1 is faster than cosh/sinh
// on most platforms, and division is now commonly pipelined, so we
// might replace the check above with a much more conservative one,
// and then evaluate cosh(x) and sinh(x) as
//
// cosh(x) = 1 + 0.5*expm1(x)*expm1(x) / (1 + expm1(x))
// sinh(x) = expm1(x) + 0.5*expm1(x) / (1 + expm1(x))
//
// This won't be a _big_ win except on platforms with a crappy sinh
// and cosh, and for those we should probably just provide our own
// implementations of _those_, so for now let's keep it simple and
// obviously correct.
return Complex(
RealType.cosh(z.x) * RealType.cos(z.y),
RealType.sinh(z.x) * RealType.sin(z.y)
)
}
// sinh(x + iy) = sinh(x) cos(y) + i cosh(x) sin(y)
//
// See cosh above for algorithm details.
@inlinable
public static func sinh(_ z: Complex) -> Complex {
guard z.isFinite else { return z }
guard z.x.magnitude < -RealType.log(.ulpOfOne) else {
let phase = Complex(RealType.cos(z.y), RealType.sin(z.y))
let firstScale = RealType.exp(z.x.magnitude/2)
let secondScale = RealType(signOf: z.x, magnitudeOf: firstScale/2)
return phase.multiplied(by: firstScale).multiplied(by: secondScale)
}
return Complex(
RealType.sinh(z.x) * RealType.cos(z.y),
RealType.cosh(z.x) * RealType.sin(z.y)
)
}
// tanh(z) = sinh(z) / cosh(z)
@inlinable
public static func tanh(_ z: Complex) -> Complex {
guard z.isFinite else { return z }
// Note that when |x| is larger than -log(.ulpOfOne),
// sinh(x + iy) == ±cosh(x + iy), so tanh(x + iy) is just ±1.
guard z.x.magnitude < -RealType.log(.ulpOfOne) else {
return Complex(
RealType(signOf: z.x, magnitudeOf: 1),
RealType(signOf: z.y, magnitudeOf: 0)
)
}
// Now we have z in a vertical strip where exp(x) is reasonable,
// and y is finite, so we can simply evaluate sinh(z) and cosh(z).
//
// TODO: Kahan uses a different expression for evaluation here; it
// isn't strictly necessary for numerics reasons--it's to avoid
// doing the complex division, but it probably provides better
// componentwise error bounds, and is likely more efficient (because
// it avoids the complex division, which is painful even when well-
// scaled). This suffices to get us up and running.
return sinh(z) / cosh(z)
}
// cos(z) = cosh(iz)
@inlinable
public static func cos(_ z: Complex) -> Complex {
return cosh(Complex(-z.y, z.x))
}
// sin(z) = -i*sinh(iz)
@inlinable
public static func sin(_ z: Complex) -> Complex {
let w = sinh(Complex(-z.y, z.x))
return Complex(w.y, -w.x)
}
// tan(z) = -i*tanh(iz)
@inlinable
public static func tan(_ z: Complex) -> Complex {
let w = tanh(Complex(-z.y, z.x))
return Complex(w.y, -w.x)
}
// MARK: - log-like functions
@inlinable
public static func log(_ z: Complex) -> Complex {
// If z is zero or infinite, the phase is undefined, so the result is
// the single exceptional value.
guard z.isFinite && !z.isZero else { return .infinity }
// Having eliminated non-finite values and zero, the imaginary part is
// easy; it's just the phase, which is always computed with good
// relative accuracy via atan2.
let θ = z.phase
// The real part of the result is trickier. In exact arithmetic, the
// real part is just log |z|--many implementations of complex functions
// simply use this expression as is. However, there are two problems
// lurking here:
//
// - length can overflow even when log(z) is finite.
//
// - when length is close to 1, catastrophic cancellation is hidden
// in this expression. Consider, e.g. z = 1 + δi for small δ.
//
// Because δ ≪ 1, |z| rounds to 1, and so log |z| produces zero.
// We can expand using Taylor series to see that the result should
// be:
//
// log |z| = log √(1 + δ²)
// = log(1 + δ²)/2
// = δ²/2 + O(δ⁴)
//
// So naively using log |z| results in a total loss of relative
// accuracy for this case. Note that this is _not_ constrained near
// a single point; it occurs everywhere close to the circle |z| = 1.
//
// Note that this case still _does_ deliver a result with acceptable
// relative accuracy in the complex norm, because
//
// Im(log z) ≈ δ ≫ δ²/2 ≈ Re(log z).
//
// There are a number of ways to try to tackle this problem. I'll begin
// with a simple one that solves the first issue, and _sometimes_ the
// second, then analyze when it doesn't work for the second case.
//
// To handle very large arguments without overflow, the standard
// approach is to _rescale_ the problem. We can do this by finding
// whichever of x and y has greater magnitude, and dividing through
// by it. You can think of this as changing coordinates by reflections
// so that we get a new value w = u + iv with |w| = |z| (and hence
// Re(log w) = Re(log z), and 0 ≤ u, 0 ≤ v ≤ u.
let u = max(z.x.magnitude, z.y.magnitude)
let v = min(z.x.magnitude, z.y.magnitude)
// Now expand out log |w|:
//
// log |w| = log(u² + v²)/2
// = log u + log(onePlus: (v/u)²)/2
//
// This looks promising! It handles overflow well, because log(u) is
// finite for every finite u, and we have 0 ≤ v/u ≤ 1, so the second
// term is bounded by 0 ≤ log(1 + (v/u)²)/2 ≤ (log 2)/2. It also
// handles the example I gave above well: we have u = 1, v = δ, and
//
// log(1) + log(onePlus: δ²)/2 = 0 + δ²/2
//
// as expected.
//
// Unfortunately, it does not handle all points close to the unit
// circle so well; it's easy to see why if we look at the two terms
// that contribute to the result. Cancellation occurs when the result
// is close to zero and the terms have opposing signs. By construction,
// the second term is always positive, so the easiest observation is
// that cancellation is only a problem for u < 1 (because otherwise
// log u is also positive, and there can be no cancellation).
//
// We are not trying for sub-ulp accuracy, just a good relative error
// bound, so for our purposes it suffices to have log u dominate the
// result:
if u >= 1 || u >= Relaxed.multiplyAdd(u, u, v*v) {
let r = v / u
return Complex(.log(u) + .log(onePlus: r*r)/2, θ)
}
// Here we're in the tricky case; cancellation is likely to occur.
// Instead of the factorization used above, we will want to evaluate
// log(onePlus: u² + v² - 1)/2. This all boils down to accurately
// evaluating u² + v² - 1. To begin, calculate both squared terms
// as exact head-tail products (u is guaranteed to be well scaled,
// v may underflow, but if it does it doesn't matter, the u term is
// all we need).
let (a,b) = Augmented.product(u, u)
let (c,d) = Augmented.product(v, v)
// It would be nice if we could simply use a - 1, but unfortunately
// we don't have a tight enough bound to guarantee that that expression
// is exact; a may be as small as 1/4, so we could lose a single bit
// to rounding if we did that.
var (s,e) = Augmented.sum(large: -1, small: a)
// Now we are ready to assemble the result. If cancellation happens,
// then |c| > |e| > |b|, |d|, so this assembly order is safe. It's
// also possible that |c| and |d| are small, but if that happens then
// there is no significant cancellation, and the exact assembly doesn't
// matter.
s = (s + c) + e + b + d
return Complex(.log(onePlus: s)/2, θ)
}
@inlinable
public static func log(onePlus z: Complex) -> Complex {
// If either |x| or |y| is bounded away from the origin, we don't need
// any extra precision, and can just literally compute log(1+z). Note
// that this includes part of the circle |1+z| = 1 where log(onePlus:)
// vanishes (where x <= -0.5), but on this portion of the circle 1+x
// is always exact by Sterbenz' lemma, so as long as log( ) produces
// a good result, log(1+z) will too.
guard 2*z.x.magnitude < 1 && z.y.magnitude < 1 else { return log(1+z) }
// z is in (±0.5, ±1), so we need to evaluate more carefully.
// The imaginary part is straightforward:
let θ = (1+z).phase
// For the real part, we _could_ use the same approach that we do for
// log( ), but we'd need an extra-precise (1+x)², which can potentially
// be quite painful to calculate. Instead, we can use an approach that
// NevinBR suggested on the Swift forums:
//
// Re(log(1+z)) = (log(1+z) + log(1+z̅)) / 2
// = log((1+z)(1+z̅)) / 2
// = log(1 + z + z̅ + zz̅) / 2
// = log(1 + 2x + x² + y²) / 2
// = log(onePlus: (2+x)x + y²) / 2
//
// So now we need to evaluate (2+x)x + y² accurately. To do this,
// we employ augmented arithmetic; the key observation here is that
// cancellation is only a problem when y² ≈ -(2+x)x
let xp2 = Augmented.sum(large: 2, small: z.x) // Known that 2 > |x|.
let a = Augmented.product(z.x, xp2.head)
let y² = Augmented.product(z.y, z.y)
let s = (a.head + y².head + a.tail + y².tail).addingProduct(z.x, xp2.tail)
return Complex(.log(onePlus: s)/2, θ)
}
@inlinable
public static func acos(_ z: Complex) -> Complex {
Complex(
2*RealType.atan2(y: sqrt(1-z).real, x: sqrt(1+z).real),
RealType.asinh((sqrt(1+z).conjugate * sqrt(1-z)).imaginary)
)
}
@inlinable
public static func asin(_ z: Complex) -> Complex {
Complex(
RealType.atan2(y: z.x, x: (sqrt(1-z) * sqrt(1+z)).real),
RealType.asinh((sqrt(1-z).conjugate * sqrt(1+z)).imaginary)
)
}
// atan(z) = -i*atanh(iz)
@inlinable
public static func atan(_ z: Complex) -> Complex {
let w = atanh(Complex(-z.y, z.x))
return Complex(w.y, -w.x)
}
@inlinable
public static func acosh(_ z: Complex) -> Complex {
Complex(
RealType.asinh((sqrt(z-1).conjugate * sqrt(z+1)).real),
2*RealType.atan2(y: sqrt(z-1).imaginary, x: sqrt(z+1).real)
)
}
// asinh(z) = -i*asin(iz)
@inlinable
public static func asinh(_ z: Complex) -> Complex {
let w = asin(Complex(-z.y, z.x))
return Complex(w.y, -w.x)
}
@inlinable
public static func atanh(_ z: Complex) -> Complex {
// TODO: Kahan uses a much more complicated expression here; possibly
// simply because he didn't have a complex log(1+z) with good
// characteristics. Investigate tradeoffs further.
//
// Further TODO: decide policy for point at infinity / NaN. Unlike most
// of these functions, atanh doesn't have a pole at infinity; convention
// in C-family languages is use one value in the upper half plane, and
// another in the lower. Requires some thought about the most appropriate
// way to handle this case in Swift.
(log(onePlus: z) - log(onePlus:-z))/2
}
// MARK: - pow-like functions
/// `exp(w*log(z))`
///
/// Edge cases for this function are defined according to the defining
/// expression exp(w log(z)), except that we define pow(0, w) to be 0
/// instead of infinity when w is in the (strict) right half-plane, so that
/// we agree with RealType.pow on the positive real line.
@inlinable
public static func pow(_ z: Complex, _ w: Complex) -> Complex {
if z.isZero { return w.real > 0 ? zero : infinity }
return exp(w * log(z))
}
@inlinable
public static func pow(_ z: Complex, _ n: Int) -> Complex {
if z.isZero { return n < 0 ? infinity : n == 0 ? one : zero }
// TODO: this implementation is not quite correct, because n may be
// rounded in conversion to RealType. This only effects very extreme
// cases, so we'll leave it alone for now.
//
// Note that this does not have the same problems that a similar
// implementation for a real type would have, because there's no
// parity/sign interaction in the complex plane.
return exp(log(z).multiplied(by: RealType(n)))
}
@inlinable
public static func sqrt(_ z: Complex) -> Complex {
let lengthSquared = z.lengthSquared
if lengthSquared.isNormal {
// If |z|^2 doesn't overflow, then define u and v by:
//
// u = sqrt((|z|+|x|)/2)
// v = y/2u
//
// If x is positive, the result is just w = (u, v). If x is negative,
// the result is (|v|, copysign(u, y)) instead.
let norm = RealType.sqrt(lengthSquared)
let u = RealType.sqrt((norm + abs(z.x))/2)
let v: RealType = z.y / (2*u)
if z.x.sign == .plus {
return Complex(u, v)
} else {
return Complex(abs(v), RealType(signOf: z.y, magnitudeOf: u))
}
}
// Handle edge cases:
if z.isZero { return Complex(0, z.y) }
if !z.isFinite { return z }
// z is finite but badly-scaled. Rescale and replay by factoring out
// the larger of x and y.
let scale = RealType.maximum(abs(z.x), abs(z.y))
return Complex.sqrt(z.divided(by: scale)).multiplied(by: .sqrt(scale))
}
@inlinable
public static func root(_ z: Complex, _ n: Int) -> Complex {
if z.isZero { return .zero }
// TODO: this implementation is not quite correct, because n may be
// rounded in conversion to RealType. This only effects very extreme
// cases, so we'll leave it alone for now.
//
// Note that this does not have the same problems that a similar
// implementation for a real type would have, because there's no
// parity/sign interaction in the complex plane.
return exp(log(z).divided(by: RealType(n)))
}
}