-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathComplex.swift
226 lines (203 loc) · 7.48 KB
/
Complex.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//===--- Complex.swift ----------------------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019 - 2021 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
import RealModule
/// A complex number represented by real and imaginary parts.
///
/// TODO: introductory text on complex numbers
///
/// Implementation notes:
///
/// This type does not provide heterogeneous real/complex arithmetic,
/// not even the natural vector-space operations like real * complex.
/// There are two reasons for this choice: first, Swift broadly avoids
/// mixed-type arithmetic when the operation can be adequately expressed
/// by a conversion and homogeneous arithmetic. Second, with the current
/// typechecker rules, it would lead to undesirable ambiguity in common
/// expressions (see README.md for more details).
///
/// Unlike C's `_Complex` and C++'s `std::complex<>` types, we do not
/// attempt to make meaningful semantic distinctions between different
/// representations of infinity or NaN. Any Complex value with at least
/// one non-finite component is simply "non-finite". In as much as
/// possible, we use the semantics of the point at infinity on the
/// Riemann sphere for such values. This approach simplifies the number of
/// edge cases that need to be considered for multiplication, division, and
/// the elementary functions considerably.
///
/// `.magnitude` does not return the Euclidean norm; it uses the "infinity
/// norm" (`max(|real|,|imaginary|)`) instead. There are two reasons for this
/// choice: first, it's simply faster to compute on most hardware. Second,
/// there exist values for which the Euclidean norm cannot be represented
/// (consider a number with `.real` and `.imaginary` both equal to
/// `RealType.greatestFiniteMagnitude`; the Euclidean norm would be
/// `.sqrt(2) * .greatestFiniteMagnitude`, which overflows). Using
/// the infinity norm avoids this problem entirely without significant
/// downsides. You can access the Euclidean norm using the `length`
/// property.
@frozen
public struct Complex<RealType> where RealType: Real {
// A note on the `x` and `y` properties
//
// `x` and `y` are the names we use for the raw storage of the real and
// imaginary components of our complex number. We also provide public
// `.real` and `.imaginary` properties, which wrap this storage and
// fixup the semantics for non-finite values.
/// The real component of the value.
@usableFromInline @inline(__always)
internal var x: RealType
/// The imaginary part of the value.
@usableFromInline @inline(__always)
internal var y: RealType
/// A complex number constructed by specifying the real and imaginary parts.
@_transparent
public init(_ real: RealType, _ imaginary: RealType) {
x = real
y = imaginary
}
}
extension Complex: Sendable where RealType: Sendable { }
// MARK: - Basic properties
extension Complex {
/// The real part of this complex value.
///
/// If `z` is not finite, `z.real` is `.nan`.
public var real: RealType {
@_transparent
get { isFinite ? x : .nan }
@_transparent
set { x = newValue }
}
/// The imaginary part of this complex value.
///
/// If `z` is not finite, `z.imaginary` is `.nan`.
public var imaginary: RealType {
@_transparent
get { isFinite ? y : .nan }
@_transparent
set { y = newValue }
}
/// The raw representation of the real part of this value.
@_transparent
public var _rawX: RealType { x }
/// The raw representation of the imaginary part of this value.
@_transparent
public var _rawY: RealType { y }
}
extension Complex {
/// The imaginary unit.
///
/// See also `.zero`, `.one` and `.infinity`.
@_transparent
public static var i: Complex {
Complex(0, 1)
}
/// The point at infinity.
///
/// See also `.zero`, `.one` and `.i`.
@_transparent
public static var infinity: Complex {
Complex(.infinity, 0)
}
/// True if this value is finite.
///
/// A complex value is finite if neither component is an infinity or nan.
///
/// See also `.isNormal`, `.isSubnormal` and `.isZero`.
@_transparent
public var isFinite: Bool {
x.isFinite && y.isFinite
}
/// True if this value is normal.
///
/// A complex number is normal if it is finite and *either* the real or
/// imaginary component is normal. A floating-point number representing
/// one of the components is normal if its exponent allows a full-precision
/// representation.
///
/// See also `.isFinite`, `.isSubnormal` and `.isZero`.
@_transparent
public var isNormal: Bool {
isFinite && (x.isNormal || y.isNormal)
}
/// True if this value is subnormal.
///
/// A complex number is subnormal if it is finite, not normal, and not zero.
/// When the result of a computation is subnormal, underflow has occurred and
/// the result generally does not have full precision.
///
/// See also `.isFinite`, `.isNormal` and `.isZero`.
@_transparent
public var isSubnormal: Bool {
isFinite && !isNormal && !isZero
}
/// True if this value is zero.
///
/// A complex number is zero if *both* the real and imaginary components
/// are zero.
///
/// See also `.isFinite`, `.isNormal` and `isSubnormal`.
@_transparent
public var isZero: Bool {
x == 0 && y == 0
}
/// A "canonical" representation of the value.
///
/// For normal complex numbers with a RealType conforming to
/// BinaryFloatingPoint (the common case), the result is simply this value
/// unmodified. For zeros, the result has the representation (+0, +0). For
/// infinite values, the result has the representation (+inf, +0).
///
/// If the RealType admits non-canonical representations, the x and y
/// components are canonicalized in the result.
///
/// This is mainly useful for interoperation with other languages, where
/// you may want to reduce each equivalence class to a single representative
/// before passing across language boundaries, but it may also be useful
/// for some serialization tasks. It's also a useful implementation detail
/// for some primitive operations.
@_transparent
public var canonicalized: Self {
if isZero { return .zero }
if isFinite { return self.multiplied(by: 1) }
return .infinity
}
}
// MARK: - Additional Initializers
extension Complex {
/// The complex number with specified real part and zero imaginary part.
///
/// Equivalent to `Complex(real, 0)`.
@inlinable
public init(_ real: RealType) {
self.init(real, 0)
}
/// The complex number with specified imaginary part and zero real part.
///
/// Equivalent to `Complex(0, imaginary)`.
@inlinable
public init(imaginary: RealType) {
self.init(0, imaginary)
}
}
extension Complex where RealType: BinaryFloatingPoint {
/// `other` rounded to the nearest representable value of this type.
@inlinable
public init<Other: BinaryFloatingPoint>(_ other: Complex<Other>) {
self.init(RealType(other.x), RealType(other.y))
}
/// `other`, if it can be represented exactly in this type; otherwise `nil`.
@inlinable
public init?<Other: BinaryFloatingPoint>(exactly other: Complex<Other>) {
guard let x = RealType(exactly: other.x),
let y = RealType(exactly: other.y) else { return nil }
self.init(x, y)
}
}